Datasets:
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
---
|
6 |
+
# latent_imagenet (VQGAN-encoded ImageNet Test Set)
|
7 |
+
|
8 |
+
## Dataset Summary
|
9 |
+
|
10 |
+
This dataset contains latent representations of the **ImageNet test set**, generated using a **VQGAN encoder**.
|
11 |
+
Each image is encoded into a tensor of shape **3 × 64 × 64** in the latent space.
|
12 |
+
|
13 |
+
This latent dataset can be used for:
|
14 |
+
- Accelerating training and inference in generative models (e.g., diffusion models in latent space)
|
15 |
+
- Research on semantic compression and generative modeling
|
16 |
+
- Experiments with reconstruction, super-resolution, and latent editing
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
## Dataset Details
|
21 |
+
|
22 |
+
- **Source dataset**: [ImageNet](https://image-net.org/)
|
23 |
+
- **Subset**: `test` split
|
24 |
+
- **Preprocessing**: Images were encoded into latent tensors using a pre-trained VQGAN encoder.
|
25 |
+
- **Latent shape**: `3 × 64 × 64`
|
26 |
+
- **File format**: PyTorch tensor (`.pt` / `.pth`) or NumPy array (depending on your processing pipeline)
|
27 |
+
- **Number of samples**: Equal to the ImageNet test set size.
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
## Example Usage
|
32 |
+
|
33 |
+
```python
|
34 |
+
from datasets import load_dataset
|
35 |
+
import torch
|
36 |
+
|
37 |
+
# Load the dataset
|
38 |
+
dataset = load_dataset("liangzhidanta/latent_imagenet")
|
39 |
+
|
40 |
+
# Access one sample
|
41 |
+
sample = dataset["train"][0] # or "test" depending on your split
|
42 |
+
latent = torch.tensor(sample["latent"]) # shape: [3, 64, 64]
|