Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -60,6 +60,64 @@ This demonstrates the fidelity of VQGAN latents for reconstruction and downstrea
|
|
60 |
|
61 |
---
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
## Example Usage
|
64 |
|
65 |
```python
|
|
|
60 |
|
61 |
---
|
62 |
|
63 |
+
## Decoding Latents
|
64 |
+
|
65 |
+
You can decode the latent representations back into images using a pre-trained VQGAN.
|
66 |
+
Here is an example workflow:
|
67 |
+
|
68 |
+
```python
|
69 |
+
import torch
|
70 |
+
from PIL import Image
|
71 |
+
import matplotlib.pyplot as plt
|
72 |
+
from torchvision import transforms
|
73 |
+
from ldm.util import instantiate_from_config
|
74 |
+
from omegaconf import OmegaConf
|
75 |
+
|
76 |
+
# ----------------------------
|
77 |
+
# 1) Initialize VQGAN
|
78 |
+
# ----------------------------
|
79 |
+
class VQGANProcessor:
|
80 |
+
def __init__(self, config_path, ckpt_path, device=None):
|
81 |
+
self.device = device or (torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
|
82 |
+
config = OmegaConf.load(config_path)
|
83 |
+
sd = torch.load(ckpt_path, map_location=self.device)['state_dict']
|
84 |
+
model = instantiate_from_config(config.model)
|
85 |
+
model.load_state_dict(sd, strict=False)
|
86 |
+
model.eval().to(self.device)
|
87 |
+
self.first_stage = model.first_stage_model
|
88 |
+
|
89 |
+
def decode(self, latent: torch.Tensor) -> torch.Tensor:
|
90 |
+
with torch.no_grad():
|
91 |
+
rec = self.first_stage.decode(latent.to(self.device))
|
92 |
+
rec = torch.clamp((rec + 1.)/2., 0, 1)
|
93 |
+
return rec
|
94 |
+
|
95 |
+
# ----------------------------
|
96 |
+
# 2) Load a latent sample
|
97 |
+
# ----------------------------
|
98 |
+
latent_path = "latent_imagenet/class_name/sample.pt"
|
99 |
+
latent = torch.load(latent_path).unsqueeze(0) # [1,3,64,64]
|
100 |
+
|
101 |
+
# ----------------------------
|
102 |
+
# 3) Decode the latent
|
103 |
+
# ----------------------------
|
104 |
+
processor = VQGANProcessor("configs/latent-diffusion/cin256-v2.yaml",
|
105 |
+
"models/ldm/cin256-v2/model.ckpt")
|
106 |
+
recon = processor.decode(latent).squeeze(0).permute(1,2,0).cpu().numpy() # [H,W,3] ∈ [0,1]
|
107 |
+
|
108 |
+
# ----------------------------
|
109 |
+
# 4) (Optional) Compare with original image
|
110 |
+
# ----------------------------
|
111 |
+
orig_path = "process_data/imagenet/val/class_name/sample.JPEG"
|
112 |
+
orig = Image.open(orig_path).convert("RGB")
|
113 |
+
orig_resized = orig.resize((256,256))
|
114 |
+
|
115 |
+
fig, axes = plt.subplots(1,3, figsize=(18,6))
|
116 |
+
axes[0].imshow(orig); axes[0].set_title("Original"); axes[0].axis("off")
|
117 |
+
axes[1].imshow(orig_resized); axes[1].set_title("Resized 256×256"); axes[1].axis("off")
|
118 |
+
axes[2].imshow(recon); axes[2].set_title("Reconstruction"); axes[2].axis("off")
|
119 |
+
plt.show()
|
120 |
+
|
121 |
## Example Usage
|
122 |
|
123 |
```python
|