Delete loading script
Browse files- civil_comments_helm.py +0 -75
civil_comments_helm.py
DELETED
|
@@ -1,75 +0,0 @@
|
|
| 1 |
-
import datasets
|
| 2 |
-
import os
|
| 3 |
-
import json
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
categories = ["male", "female", "LGBTQ", "christian", "muslim", "other_religions", "black", "white", "all"]
|
| 7 |
-
|
| 8 |
-
_CITATION = """
|
| 9 |
-
@inproceedings{wilds2021,
|
| 10 |
-
title = {{WILDS}: A Benchmark of in-the-Wild Distribution Shifts},
|
| 11 |
-
author = {Pang Wei Koh and Shiori Sagawa and Henrik Marklund and Sang Michael Xie and Marvin Zhang and
|
| 12 |
-
Akshay Balsubramani and Weihua Hu and Michihiro Yasunaga and Richard Lanas Phillips and Irena Gao and
|
| 13 |
-
Tony Lee and Etienne David and Ian Stavness and Wei Guo and Berton A. Earnshaw and Imran S. Haque and
|
| 14 |
-
Sara Beery and Jure Leskovec and Anshul Kundaje and Emma Pierson and Sergey Levine and Chelsea Finn
|
| 15 |
-
and Percy Liang},
|
| 16 |
-
booktitle = {International Conference on Machine Learning (ICML)},
|
| 17 |
-
year = {2021}
|
| 18 |
-
}
|
| 19 |
-
|
| 20 |
-
@inproceedings{borkan2019nuanced,
|
| 21 |
-
title={Nuanced metrics for measuring unintended bias with real data for text classification},
|
| 22 |
-
author={Borkan, Daniel and Dixon, Lucas and Sorensen, Jeffrey and Thain, Nithum and Vasserman, Lucy},
|
| 23 |
-
booktitle={Companion Proceedings of The 2019 World Wide Web Conference},
|
| 24 |
-
pages={491--500},
|
| 25 |
-
year={2019}
|
| 26 |
-
}"""
|
| 27 |
-
|
| 28 |
-
class CivilCommentsHELM(datasets.GeneratorBasedBuilder):
|
| 29 |
-
VERSION = datasets.Version("1.0.0")
|
| 30 |
-
|
| 31 |
-
BUILDER_CONFIGS = [
|
| 32 |
-
datasets.BuilderConfig(name=name, version=datasets.Version("1.0.0"), description="")
|
| 33 |
-
for name in categories
|
| 34 |
-
]
|
| 35 |
-
|
| 36 |
-
#"references": [{"output": "The gay couple", "tags": ["negative", "ambiguous", "B", "A", "C", "B"]}, {"output": "Not enough info", "tags": ["correct", "negative", "ambiguous", "B", "A", "C", "B"]}, {"output": "The pansexual couple", "tags": ["negative", "ambiguous", "B", "A", "C", "B"]}], "choices": ["The gay couple", "Not enough info", "The pansexual couple"], "gold_index": 1}
|
| 37 |
-
|
| 38 |
-
def _info(self):
|
| 39 |
-
features = datasets.Features(
|
| 40 |
-
{
|
| 41 |
-
"text": datasets.Value("string"),
|
| 42 |
-
"gold": datasets.Value("string"),
|
| 43 |
-
"sub_split": datasets.Value("string"),
|
| 44 |
-
|
| 45 |
-
}
|
| 46 |
-
)
|
| 47 |
-
return datasets.DatasetInfo(
|
| 48 |
-
description=f"Civil comments, as preprocessed and shuffled in HELM",
|
| 49 |
-
features=features,
|
| 50 |
-
homepage="",
|
| 51 |
-
license="",
|
| 52 |
-
citation=_CITATION,
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
def _split_generators(self, dl_manager):
|
| 56 |
-
train_json = dl_manager.download(os.path.join(self.config.name, "train.json"))
|
| 57 |
-
test_json = dl_manager.download(os.path.join(self.config.name, "test.json"))
|
| 58 |
-
|
| 59 |
-
return [
|
| 60 |
-
datasets.SplitGenerator(
|
| 61 |
-
name=datasets.Split.TRAIN,
|
| 62 |
-
gen_kwargs={"path": train_json},
|
| 63 |
-
),
|
| 64 |
-
datasets.SplitGenerator(
|
| 65 |
-
name=datasets.Split.TEST,
|
| 66 |
-
gen_kwargs={"path": test_json},
|
| 67 |
-
)
|
| 68 |
-
]
|
| 69 |
-
|
| 70 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 71 |
-
def _generate_examples(self, path):
|
| 72 |
-
with open(path, encoding="utf-8") as f:
|
| 73 |
-
for key, row in enumerate(f):
|
| 74 |
-
yield key, json.loads(row)
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|