Clémentine
commited on
Commit
·
bc8ef8e
1
Parent(s):
d986a3a
init
Browse files- case_hold/test.jsonl +0 -0
- case_hold/train.jsonl +0 -0
- case_hold/validation.jsonl +0 -0
- ecthr_a/test.jsonl +0 -0
- ecthr_a/train.jsonl +0 -0
- ecthr_a/validation.jsonl +0 -0
- ecthr_b/test.jsonl +0 -0
- ecthr_b/train.jsonl +0 -0
- ecthr_b/validation.jsonl +0 -0
- eurlex/test.jsonl +0 -0
- eurlex/train.jsonl +0 -0
- eurlex/validation.jsonl +0 -0
- ledgar/test.jsonl +0 -0
- ledgar/train.jsonl +0 -0
- ledgar/validation.jsonl +0 -0
- lexglue.py +572 -0
- scotus/test.jsonl +0 -0
- scotus/train.jsonl +0 -0
- scotus/validation.jsonl +0 -0
- unfair_tos/test.jsonl +0 -0
- unfair_tos/train.jsonl +0 -0
- unfair_tos/validation.jsonl +0 -0
case_hold/test.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
case_hold/train.jsonl
ADDED
|
Binary file (78.3 MB). View file
|
|
|
case_hold/validation.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ecthr_a/test.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ecthr_a/train.jsonl
ADDED
|
Binary file (91.3 MB). View file
|
|
|
ecthr_a/validation.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ecthr_b/test.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ecthr_b/train.jsonl
ADDED
|
Binary file (91.3 MB). View file
|
|
|
ecthr_b/validation.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
eurlex/test.jsonl
ADDED
|
Binary file (61.6 MB). View file
|
|
|
eurlex/train.jsonl
ADDED
|
Binary file (408 MB). View file
|
|
|
eurlex/validation.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ledgar/test.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ledgar/train.jsonl
ADDED
|
Binary file (75.1 MB). View file
|
|
|
ledgar/validation.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
lexglue.py
ADDED
|
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""LexGLUE: A Benchmark Dataset for Legal Language Understanding in English."""
|
| 16 |
+
|
| 17 |
+
import csv
|
| 18 |
+
import json
|
| 19 |
+
import textwrap
|
| 20 |
+
|
| 21 |
+
import datasets
|
| 22 |
+
import os
|
| 23 |
+
|
| 24 |
+
MAIN_CITATION = """\
|
| 25 |
+
@article{chalkidis-etal-2021-lexglue,
|
| 26 |
+
title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},
|
| 27 |
+
author={Chalkidis, Ilias and
|
| 28 |
+
Jana, Abhik and
|
| 29 |
+
Hartung, Dirk and
|
| 30 |
+
Bommarito, Michael and
|
| 31 |
+
Androutsopoulos, Ion and
|
| 32 |
+
Katz, Daniel Martin and
|
| 33 |
+
Aletras, Nikolaos},
|
| 34 |
+
year={2021},
|
| 35 |
+
eprint={2110.00976},
|
| 36 |
+
archivePrefix={arXiv},
|
| 37 |
+
primaryClass={cs.CL},
|
| 38 |
+
note = {arXiv: 2110.00976},
|
| 39 |
+
}"""
|
| 40 |
+
|
| 41 |
+
_DESCRIPTION = """\
|
| 42 |
+
Legal General Language Understanding Evaluation (LexGLUE) benchmark is
|
| 43 |
+
a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
ECTHR_ARTICLES = ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"]
|
| 47 |
+
|
| 48 |
+
EUROVOC_CONCEPTS = [
|
| 49 |
+
"100163",
|
| 50 |
+
"100168",
|
| 51 |
+
"100169",
|
| 52 |
+
"100170",
|
| 53 |
+
"100171",
|
| 54 |
+
"100172",
|
| 55 |
+
"100173",
|
| 56 |
+
"100174",
|
| 57 |
+
"100175",
|
| 58 |
+
"100176",
|
| 59 |
+
"100177",
|
| 60 |
+
"100179",
|
| 61 |
+
"100180",
|
| 62 |
+
"100183",
|
| 63 |
+
"100184",
|
| 64 |
+
"100185",
|
| 65 |
+
"100186",
|
| 66 |
+
"100187",
|
| 67 |
+
"100189",
|
| 68 |
+
"100190",
|
| 69 |
+
"100191",
|
| 70 |
+
"100192",
|
| 71 |
+
"100193",
|
| 72 |
+
"100194",
|
| 73 |
+
"100195",
|
| 74 |
+
"100196",
|
| 75 |
+
"100197",
|
| 76 |
+
"100198",
|
| 77 |
+
"100199",
|
| 78 |
+
"100200",
|
| 79 |
+
"100201",
|
| 80 |
+
"100202",
|
| 81 |
+
"100204",
|
| 82 |
+
"100205",
|
| 83 |
+
"100206",
|
| 84 |
+
"100207",
|
| 85 |
+
"100212",
|
| 86 |
+
"100214",
|
| 87 |
+
"100215",
|
| 88 |
+
"100220",
|
| 89 |
+
"100221",
|
| 90 |
+
"100222",
|
| 91 |
+
"100223",
|
| 92 |
+
"100224",
|
| 93 |
+
"100226",
|
| 94 |
+
"100227",
|
| 95 |
+
"100229",
|
| 96 |
+
"100230",
|
| 97 |
+
"100231",
|
| 98 |
+
"100232",
|
| 99 |
+
"100233",
|
| 100 |
+
"100234",
|
| 101 |
+
"100235",
|
| 102 |
+
"100237",
|
| 103 |
+
"100238",
|
| 104 |
+
"100239",
|
| 105 |
+
"100240",
|
| 106 |
+
"100241",
|
| 107 |
+
"100242",
|
| 108 |
+
"100243",
|
| 109 |
+
"100244",
|
| 110 |
+
"100245",
|
| 111 |
+
"100246",
|
| 112 |
+
"100247",
|
| 113 |
+
"100248",
|
| 114 |
+
"100249",
|
| 115 |
+
"100250",
|
| 116 |
+
"100252",
|
| 117 |
+
"100253",
|
| 118 |
+
"100254",
|
| 119 |
+
"100255",
|
| 120 |
+
"100256",
|
| 121 |
+
"100257",
|
| 122 |
+
"100258",
|
| 123 |
+
"100259",
|
| 124 |
+
"100260",
|
| 125 |
+
"100261",
|
| 126 |
+
"100262",
|
| 127 |
+
"100263",
|
| 128 |
+
"100264",
|
| 129 |
+
"100265",
|
| 130 |
+
"100266",
|
| 131 |
+
"100268",
|
| 132 |
+
"100269",
|
| 133 |
+
"100270",
|
| 134 |
+
"100271",
|
| 135 |
+
"100272",
|
| 136 |
+
"100273",
|
| 137 |
+
"100274",
|
| 138 |
+
"100275",
|
| 139 |
+
"100276",
|
| 140 |
+
"100277",
|
| 141 |
+
"100278",
|
| 142 |
+
"100279",
|
| 143 |
+
"100280",
|
| 144 |
+
"100281",
|
| 145 |
+
"100282",
|
| 146 |
+
"100283",
|
| 147 |
+
"100284",
|
| 148 |
+
"100285",
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
LEDGAR_CATEGORIES = [
|
| 152 |
+
"Adjustments",
|
| 153 |
+
"Agreements",
|
| 154 |
+
"Amendments",
|
| 155 |
+
"Anti-Corruption Laws",
|
| 156 |
+
"Applicable Laws",
|
| 157 |
+
"Approvals",
|
| 158 |
+
"Arbitration",
|
| 159 |
+
"Assignments",
|
| 160 |
+
"Assigns",
|
| 161 |
+
"Authority",
|
| 162 |
+
"Authorizations",
|
| 163 |
+
"Base Salary",
|
| 164 |
+
"Benefits",
|
| 165 |
+
"Binding Effects",
|
| 166 |
+
"Books",
|
| 167 |
+
"Brokers",
|
| 168 |
+
"Capitalization",
|
| 169 |
+
"Change In Control",
|
| 170 |
+
"Closings",
|
| 171 |
+
"Compliance With Laws",
|
| 172 |
+
"Confidentiality",
|
| 173 |
+
"Consent To Jurisdiction",
|
| 174 |
+
"Consents",
|
| 175 |
+
"Construction",
|
| 176 |
+
"Cooperation",
|
| 177 |
+
"Costs",
|
| 178 |
+
"Counterparts",
|
| 179 |
+
"Death",
|
| 180 |
+
"Defined Terms",
|
| 181 |
+
"Definitions",
|
| 182 |
+
"Disability",
|
| 183 |
+
"Disclosures",
|
| 184 |
+
"Duties",
|
| 185 |
+
"Effective Dates",
|
| 186 |
+
"Effectiveness",
|
| 187 |
+
"Employment",
|
| 188 |
+
"Enforceability",
|
| 189 |
+
"Enforcements",
|
| 190 |
+
"Entire Agreements",
|
| 191 |
+
"Erisa",
|
| 192 |
+
"Existence",
|
| 193 |
+
"Expenses",
|
| 194 |
+
"Fees",
|
| 195 |
+
"Financial Statements",
|
| 196 |
+
"Forfeitures",
|
| 197 |
+
"Further Assurances",
|
| 198 |
+
"General",
|
| 199 |
+
"Governing Laws",
|
| 200 |
+
"Headings",
|
| 201 |
+
"Indemnifications",
|
| 202 |
+
"Indemnity",
|
| 203 |
+
"Insurances",
|
| 204 |
+
"Integration",
|
| 205 |
+
"Intellectual Property",
|
| 206 |
+
"Interests",
|
| 207 |
+
"Interpretations",
|
| 208 |
+
"Jurisdictions",
|
| 209 |
+
"Liens",
|
| 210 |
+
"Litigations",
|
| 211 |
+
"Miscellaneous",
|
| 212 |
+
"Modifications",
|
| 213 |
+
"No Conflicts",
|
| 214 |
+
"No Defaults",
|
| 215 |
+
"No Waivers",
|
| 216 |
+
"Non-Disparagement",
|
| 217 |
+
"Notices",
|
| 218 |
+
"Organizations",
|
| 219 |
+
"Participations",
|
| 220 |
+
"Payments",
|
| 221 |
+
"Positions",
|
| 222 |
+
"Powers",
|
| 223 |
+
"Publicity",
|
| 224 |
+
"Qualifications",
|
| 225 |
+
"Records",
|
| 226 |
+
"Releases",
|
| 227 |
+
"Remedies",
|
| 228 |
+
"Representations",
|
| 229 |
+
"Sales",
|
| 230 |
+
"Sanctions",
|
| 231 |
+
"Severability",
|
| 232 |
+
"Solvency",
|
| 233 |
+
"Specific Performance",
|
| 234 |
+
"Submission To Jurisdiction",
|
| 235 |
+
"Subsidiaries",
|
| 236 |
+
"Successors",
|
| 237 |
+
"Survival",
|
| 238 |
+
"Tax Withholdings",
|
| 239 |
+
"Taxes",
|
| 240 |
+
"Terminations",
|
| 241 |
+
"Terms",
|
| 242 |
+
"Titles",
|
| 243 |
+
"Transactions With Affiliates",
|
| 244 |
+
"Use Of Proceeds",
|
| 245 |
+
"Vacations",
|
| 246 |
+
"Venues",
|
| 247 |
+
"Vesting",
|
| 248 |
+
"Waiver Of Jury Trials",
|
| 249 |
+
"Waivers",
|
| 250 |
+
"Warranties",
|
| 251 |
+
"Withholdings",
|
| 252 |
+
]
|
| 253 |
+
|
| 254 |
+
SCDB_ISSUE_AREAS = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"]
|
| 255 |
+
|
| 256 |
+
UNFAIR_CATEGORIES = [
|
| 257 |
+
"Limitation of liability",
|
| 258 |
+
"Unilateral termination",
|
| 259 |
+
"Unilateral change",
|
| 260 |
+
"Content removal",
|
| 261 |
+
"Contract by using",
|
| 262 |
+
"Choice of law",
|
| 263 |
+
"Jurisdiction",
|
| 264 |
+
"Arbitration",
|
| 265 |
+
]
|
| 266 |
+
|
| 267 |
+
CASEHOLD_LABELS = ["0", "1", "2", "3", "4"]
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class LexGlueConfig(datasets.BuilderConfig):
|
| 271 |
+
"""BuilderConfig for LexGLUE."""
|
| 272 |
+
|
| 273 |
+
def __init__(
|
| 274 |
+
self,
|
| 275 |
+
url,
|
| 276 |
+
data_url,
|
| 277 |
+
data_file,
|
| 278 |
+
citation,
|
| 279 |
+
**kwargs,
|
| 280 |
+
):
|
| 281 |
+
"""BuilderConfig for LexGLUE.
|
| 282 |
+
|
| 283 |
+
Args:
|
| 284 |
+
text_column: ``string`, name of the column in the jsonl file corresponding
|
| 285 |
+
to the text
|
| 286 |
+
label_column: `string`, name of the column in the jsonl file corresponding
|
| 287 |
+
to the label
|
| 288 |
+
url: `string`, url for the original project
|
| 289 |
+
data_url: `string`, url to download the zip file from
|
| 290 |
+
data_file: `string`, filename for data set
|
| 291 |
+
citation: `string`, citation for the data set
|
| 292 |
+
url: `string`, url for information about the data set
|
| 293 |
+
label_classes: `list[string]`, the list of classes if the label is
|
| 294 |
+
categorical. If not provided, then the label will be of type
|
| 295 |
+
`datasets.Value('float32')`.
|
| 296 |
+
multi_label: `boolean`, True if the task is multi-label
|
| 297 |
+
dev_column: `string`, name for the development subset
|
| 298 |
+
**kwargs: keyword arguments forwarded to super.
|
| 299 |
+
"""
|
| 300 |
+
super(LexGlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 301 |
+
self.url = url
|
| 302 |
+
self.data_url = data_url
|
| 303 |
+
self.data_file = data_file
|
| 304 |
+
self.citation = citation
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
class LexGLUE(datasets.GeneratorBasedBuilder):
|
| 308 |
+
"""LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. Version 1.0"""
|
| 309 |
+
|
| 310 |
+
BUILDER_CONFIGS = [
|
| 311 |
+
|
| 312 |
+
LexGlueConfig(
|
| 313 |
+
name="all",
|
| 314 |
+
description="",
|
| 315 |
+
data_url="",
|
| 316 |
+
data_file="",
|
| 317 |
+
url="",
|
| 318 |
+
citation=""
|
| 319 |
+
),
|
| 320 |
+
LexGlueConfig(
|
| 321 |
+
name="ecthr_a",
|
| 322 |
+
description=textwrap.dedent(
|
| 323 |
+
"""\
|
| 324 |
+
The European Court of Human Rights (ECtHR) hears allegations that a state has
|
| 325 |
+
breached human rights provisions of the European Convention of Human Rights (ECHR).
|
| 326 |
+
For each case, the dataset provides a list of factual paragraphs (facts) from the case description.
|
| 327 |
+
Each case is mapped to articles of the ECHR that were violated (if any)."""
|
| 328 |
+
),
|
| 329 |
+
data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz",
|
| 330 |
+
data_file="ecthr.jsonl",
|
| 331 |
+
url="https://archive.org/details/ECtHR-NAACL2021",
|
| 332 |
+
citation=textwrap.dedent(
|
| 333 |
+
"""\
|
| 334 |
+
@inproceedings{chalkidis-etal-2021-paragraph,
|
| 335 |
+
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
|
| 336 |
+
author = "Chalkidis, Ilias and
|
| 337 |
+
Fergadiotis, Manos and
|
| 338 |
+
Tsarapatsanis, Dimitrios and
|
| 339 |
+
Aletras, Nikolaos and
|
| 340 |
+
Androutsopoulos, Ion and
|
| 341 |
+
Malakasiotis, Prodromos",
|
| 342 |
+
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
|
| 343 |
+
month = jun,
|
| 344 |
+
year = "2021",
|
| 345 |
+
address = "Online",
|
| 346 |
+
publisher = "Association for Computational Linguistics",
|
| 347 |
+
url = "https://aclanthology.org/2021.naacl-main.22",
|
| 348 |
+
doi = "10.18653/v1/2021.naacl-main.22",
|
| 349 |
+
pages = "226--241",
|
| 350 |
+
}
|
| 351 |
+
}"""
|
| 352 |
+
),
|
| 353 |
+
),
|
| 354 |
+
LexGlueConfig(
|
| 355 |
+
name="ecthr_b",
|
| 356 |
+
description=textwrap.dedent(
|
| 357 |
+
"""\
|
| 358 |
+
The European Court of Human Rights (ECtHR) hears allegations that a state has
|
| 359 |
+
breached human rights provisions of the European Convention of Human Rights (ECHR).
|
| 360 |
+
For each case, the dataset provides a list of factual paragraphs (facts) from the case description.
|
| 361 |
+
Each case is mapped to articles of ECHR that were allegedly violated (considered by the court)."""
|
| 362 |
+
),
|
| 363 |
+
url="https://archive.org/details/ECtHR-NAACL2021",
|
| 364 |
+
data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz",
|
| 365 |
+
data_file="ecthr.jsonl",
|
| 366 |
+
citation=textwrap.dedent(
|
| 367 |
+
"""\
|
| 368 |
+
@inproceedings{chalkidis-etal-2021-paragraph,
|
| 369 |
+
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
|
| 370 |
+
author = "Chalkidis, Ilias
|
| 371 |
+
and Fergadiotis, Manos
|
| 372 |
+
and Tsarapatsanis, Dimitrios
|
| 373 |
+
and Aletras, Nikolaos
|
| 374 |
+
and Androutsopoulos, Ion
|
| 375 |
+
and Malakasiotis, Prodromos",
|
| 376 |
+
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
|
| 377 |
+
year = "2021",
|
| 378 |
+
address = "Online",
|
| 379 |
+
url = "https://aclanthology.org/2021.naacl-main.22",
|
| 380 |
+
}
|
| 381 |
+
}"""
|
| 382 |
+
),
|
| 383 |
+
),
|
| 384 |
+
LexGlueConfig(
|
| 385 |
+
name="eurlex",
|
| 386 |
+
description=textwrap.dedent(
|
| 387 |
+
"""\
|
| 388 |
+
European Union (EU) legislation is published in EUR-Lex portal.
|
| 389 |
+
All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus,
|
| 390 |
+
a multilingual thesaurus maintained by the Publications Office.
|
| 391 |
+
The current version of EuroVoc contains more than 7k concepts referring to various activities
|
| 392 |
+
of the EU and its Member States (e.g., economics, health-care, trade).
|
| 393 |
+
Given a document, the task is to predict its EuroVoc labels (concepts)."""
|
| 394 |
+
),
|
| 395 |
+
url="https://zenodo.org/record/5363165#.YVJOAi8RqaA",
|
| 396 |
+
data_url="https://zenodo.org/record/5532997/files/eurlex.tar.gz",
|
| 397 |
+
data_file="eurlex.jsonl",
|
| 398 |
+
citation=textwrap.dedent(
|
| 399 |
+
"""\
|
| 400 |
+
@inproceedings{chalkidis-etal-2021-multieurlex,
|
| 401 |
+
author = {Chalkidis, Ilias and
|
| 402 |
+
Fergadiotis, Manos and
|
| 403 |
+
Androutsopoulos, Ion},
|
| 404 |
+
title = {MultiEURLEX -- A multi-lingual and multi-label legal document
|
| 405 |
+
classification dataset for zero-shot cross-lingual transfer},
|
| 406 |
+
booktitle = {Proceedings of the 2021 Conference on Empirical Methods
|
| 407 |
+
in Natural Language Processing},
|
| 408 |
+
year = {2021},
|
| 409 |
+
location = {Punta Cana, Dominican Republic},
|
| 410 |
+
}
|
| 411 |
+
}"""
|
| 412 |
+
),
|
| 413 |
+
),
|
| 414 |
+
LexGlueConfig(
|
| 415 |
+
name="scotus",
|
| 416 |
+
description=textwrap.dedent(
|
| 417 |
+
"""\
|
| 418 |
+
The US Supreme Court (SCOTUS) is the highest federal court in the United States of America
|
| 419 |
+
and generally hears only the most controversial or otherwise complex cases which have not
|
| 420 |
+
been sufficiently well solved by lower courts. This is a single-label multi-class classification
|
| 421 |
+
task, where given a document (court opinion), the task is to predict the relevant issue areas.
|
| 422 |
+
The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute)."""
|
| 423 |
+
),
|
| 424 |
+
url="http://scdb.wustl.edu/data.php",
|
| 425 |
+
data_url="https://zenodo.org/record/5532997/files/scotus.tar.gz",
|
| 426 |
+
data_file="scotus.jsonl",
|
| 427 |
+
citation=textwrap.dedent(
|
| 428 |
+
"""\
|
| 429 |
+
@misc{spaeth2020,
|
| 430 |
+
author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal
|
| 431 |
+
and Theodore J. Ruger and Sara C. Benesh},
|
| 432 |
+
year = {2020},
|
| 433 |
+
title ={{Supreme Court Database, Version 2020 Release 01}},
|
| 434 |
+
url= {http://Supremecourtdatabase.org},
|
| 435 |
+
howpublished={Washington University Law}
|
| 436 |
+
}"""
|
| 437 |
+
),
|
| 438 |
+
),
|
| 439 |
+
LexGlueConfig(
|
| 440 |
+
name="ledgar",
|
| 441 |
+
description=textwrap.dedent(
|
| 442 |
+
"""\
|
| 443 |
+
LEDGAR dataset aims contract provision (paragraph) classification.
|
| 444 |
+
The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC)
|
| 445 |
+
filings, which are publicly available from EDGAR. Each label represents the single main topic
|
| 446 |
+
(theme) of the corresponding contract provision."""
|
| 447 |
+
),
|
| 448 |
+
url="https://metatext.io/datasets/ledgar",
|
| 449 |
+
data_url="https://zenodo.org/record/5532997/files/ledgar.tar.gz",
|
| 450 |
+
data_file="ledgar.jsonl",
|
| 451 |
+
citation=textwrap.dedent(
|
| 452 |
+
"""\
|
| 453 |
+
@inproceedings{tuggener-etal-2020-ledgar,
|
| 454 |
+
title = "{LEDGAR}: A Large-Scale Multi-label Corpus for Text Classification of Legal Provisions in Contracts",
|
| 455 |
+
author = {Tuggener, Don and
|
| 456 |
+
von D{\"a}niken, Pius and
|
| 457 |
+
Peetz, Thomas and
|
| 458 |
+
Cieliebak, Mark},
|
| 459 |
+
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
|
| 460 |
+
year = "2020",
|
| 461 |
+
address = "Marseille, France",
|
| 462 |
+
url = "https://aclanthology.org/2020.lrec-1.155",
|
| 463 |
+
}
|
| 464 |
+
}"""
|
| 465 |
+
),
|
| 466 |
+
),
|
| 467 |
+
LexGlueConfig(
|
| 468 |
+
name="unfair_tos",
|
| 469 |
+
description=textwrap.dedent(
|
| 470 |
+
"""\
|
| 471 |
+
The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube,
|
| 472 |
+
Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of
|
| 473 |
+
unfair contractual terms (sentences), meaning terms that potentially violate user rights
|
| 474 |
+
according to the European consumer law."""
|
| 475 |
+
),
|
| 476 |
+
url="http://claudette.eui.eu",
|
| 477 |
+
data_url="https://zenodo.org/record/5532997/files/unfair_tos.tar.gz",
|
| 478 |
+
data_file="unfair_tos.jsonl",
|
| 479 |
+
citation=textwrap.dedent(
|
| 480 |
+
"""\
|
| 481 |
+
@article{lippi-etal-2019-claudette,
|
| 482 |
+
title = "{CLAUDETTE}: an automated detector of potentially unfair clauses in online terms of service",
|
| 483 |
+
author = {Lippi, Marco
|
| 484 |
+
and Pałka, Przemysław
|
| 485 |
+
and Contissa, Giuseppe
|
| 486 |
+
and Lagioia, Francesca
|
| 487 |
+
and Micklitz, Hans-Wolfgang
|
| 488 |
+
and Sartor, Giovanni
|
| 489 |
+
and Torroni, Paolo},
|
| 490 |
+
journal = "Artificial Intelligence and Law",
|
| 491 |
+
year = "2019",
|
| 492 |
+
publisher = "Springer",
|
| 493 |
+
url = "https://doi.org/10.1007/s10506-019-09243-2",
|
| 494 |
+
pages = "117--139",
|
| 495 |
+
}"""
|
| 496 |
+
),
|
| 497 |
+
),
|
| 498 |
+
LexGlueConfig(
|
| 499 |
+
name="case_hold",
|
| 500 |
+
description=textwrap.dedent(
|
| 501 |
+
"""\
|
| 502 |
+
The CaseHOLD (Case Holdings on Legal Decisions) dataset contains approx. 53k multiple choice
|
| 503 |
+
questions about holdings of US court cases from the Harvard Law Library case law corpus.
|
| 504 |
+
Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case.
|
| 505 |
+
The input consists of an excerpt (or prompt) from a court decision, containing a reference
|
| 506 |
+
to a particular case, while the holding statement is masked out. The model must identify
|
| 507 |
+
the correct (masked) holding statement from a selection of five choices."""
|
| 508 |
+
),
|
| 509 |
+
url="https://github.com/reglab/casehold",
|
| 510 |
+
data_url="https://zenodo.org/record/5532997/files/casehold.tar.gz",
|
| 511 |
+
data_file="casehold.csv",
|
| 512 |
+
citation=textwrap.dedent(
|
| 513 |
+
"""\
|
| 514 |
+
@inproceedings{Zheng2021,
|
| 515 |
+
author = {Lucia Zheng and
|
| 516 |
+
Neel Guha and
|
| 517 |
+
Brandon R. Anderson and
|
| 518 |
+
Peter Henderson and
|
| 519 |
+
Daniel E. Ho},
|
| 520 |
+
title = {When Does Pretraining Help? Assessing Self-Supervised Learning for
|
| 521 |
+
Law and the CaseHOLD Dataset},
|
| 522 |
+
year = {2021},
|
| 523 |
+
booktitle = {International Conference on Artificial Intelligence and Law},
|
| 524 |
+
}"""
|
| 525 |
+
),
|
| 526 |
+
),
|
| 527 |
+
]
|
| 528 |
+
|
| 529 |
+
def _info(self):
|
| 530 |
+
return datasets.DatasetInfo(
|
| 531 |
+
description=self.config.description,
|
| 532 |
+
features=datasets.Features({
|
| 533 |
+
"input": datasets.Value("string"),
|
| 534 |
+
"references": datasets.features.Sequence(datasets.Value("string")),
|
| 535 |
+
"gold": datasets.features.Sequence(datasets.Value("string"))
|
| 536 |
+
|
| 537 |
+
}),
|
| 538 |
+
homepage=self.config.url,
|
| 539 |
+
citation=self.config.citation + "\n" + MAIN_CITATION,
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
def _split_generators(self, dl_manager):
|
| 543 |
+
if self.config.name == "all":
|
| 544 |
+
test = [dl_manager.download(os.path.join(name, "test.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
|
| 545 |
+
train = [dl_manager.download(os.path.join(name, "train.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
|
| 546 |
+
val = [dl_manager.download(os.path.join(name, "validation.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
|
| 547 |
+
else:
|
| 548 |
+
test = [dl_manager.download(os.path.join(self.config.name, "test.jsonl"))]
|
| 549 |
+
train = [dl_manager.download(os.path.join(self.config.name, "train.jsonl"))]
|
| 550 |
+
val = [dl_manager.download(os.path.join(self.config.name, "validation.jsonl"))]
|
| 551 |
+
|
| 552 |
+
return [
|
| 553 |
+
datasets.SplitGenerator(
|
| 554 |
+
name=datasets.Split.TRAIN,
|
| 555 |
+
gen_kwargs={"files": train},
|
| 556 |
+
),
|
| 557 |
+
datasets.SplitGenerator(
|
| 558 |
+
name=datasets.Split.VALIDATION,
|
| 559 |
+
gen_kwargs={"files": val},
|
| 560 |
+
),
|
| 561 |
+
datasets.SplitGenerator(
|
| 562 |
+
name=datasets.Split.TEST,
|
| 563 |
+
gen_kwargs={"files": test},
|
| 564 |
+
),
|
| 565 |
+
]
|
| 566 |
+
|
| 567 |
+
def _generate_examples(self, files):
|
| 568 |
+
"""This function returns the examples in the raw (text) form."""
|
| 569 |
+
for file in files:
|
| 570 |
+
with open(file, "r") as f:
|
| 571 |
+
for ix, line in enumerate(f):
|
| 572 |
+
yield ix, json.loads(line)
|
scotus/test.jsonl
ADDED
|
Binary file (77.3 MB). View file
|
|
|
scotus/train.jsonl
ADDED
|
Binary file (182 MB). View file
|
|
|
scotus/validation.jsonl
ADDED
|
Binary file (76.7 MB). View file
|
|
|
unfair_tos/test.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
unfair_tos/train.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
unfair_tos/validation.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|