lilvjosephtang commited on
Commit
530c70b
·
verified ·
1 Parent(s): e408a8d

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +33 -34
README.md CHANGED
@@ -27,6 +27,12 @@ dataset_info:
27
  dtype: int32
28
  - name: question_type
29
  dtype: string
 
 
 
 
 
 
30
  - name: option_a
31
  dtype: string
32
  - name: option_b
@@ -39,65 +45,59 @@ dataset_info:
39
  dtype: string
40
  - name: correct_idx
41
  dtype: int32
42
- - name: notation
43
- dtype: string
44
- - name: notation_type
45
- dtype: string
46
- - name: question
47
- dtype: string
48
  - name: image
49
  dtype: image
50
  splits:
51
  - name: fork
52
- num_bytes: 76992.0
53
  num_examples: 200
54
  - name: legal
55
- num_bytes: 43330.0
56
  num_examples: 200
57
  - name: puzzle
58
- num_bytes: 49953.0
59
  num_examples: 200
60
  - name: eval
61
- num_bytes: 106305.0
62
  num_examples: 200
63
  - name: carbon
64
- num_bytes: 45878.0
65
  num_examples: 200
66
  - name: hydrogen
67
- num_bytes: 46575.0
68
  num_examples: 200
69
  - name: weight
70
- num_bytes: 45289.0
71
  num_examples: 200
72
  - name: caption
73
- num_bytes: 341320.0
74
  num_examples: 200
75
  - name: notes
76
- num_bytes: 141484.0
77
  num_examples: 200
78
  - name: measures
79
- num_bytes: 128298.0
80
  num_examples: 200
81
  - name: forms
82
- num_bytes: 130491.0
83
  num_examples: 200
84
  - name: rhythm
85
- num_bytes: 115494.0
86
  num_examples: 200
87
  - name: path_counting
88
- num_bytes: 76764.0
89
  num_examples: 200
90
  - name: path_existence
91
- num_bytes: 85765.0
92
  num_examples: 200
93
  - name: shortest_path
94
- num_bytes: 75974.0
95
  num_examples: 200
96
  - name: bfs_traversal
97
- num_bytes: 92605.0
98
  num_examples: 200
99
- download_size: 654451
100
- dataset_size: 1602517.0
101
  configs:
102
  - config_name: default
103
  data_files:
@@ -155,8 +155,8 @@ Evaluating whether vision–language models (VLMs) reason consistently across re
155
  - **4 Domains**: Chess, Chemistry, Music, Graph Theory with standardized notations
156
  - **16 Tasks**: 4 tasks per domain (64 total task-modality combinations)
157
  - **3 Modalities**: Language-only (L), Vision-only (V), Vision-Language (VL)
158
- - **3,200 Questions**: 200 questions × 16 tasks
159
- - **9,600 Evaluations**: Each question evaluated in all 3 modalities
160
  - **Semantic Equivalence**: Same information presented in different representational formats
161
 
162
  ## Domains and Notation Systems
@@ -190,7 +190,7 @@ The dataset is organized into 16 task-based splits (600 samples each):
190
  - **Music**: `notes`, `measures`, `forms`, `rhythm`
191
  - **Graph Theory**: `path_counting`, `path_existence`, `shortest_path`, `bfs_traversal`
192
 
193
- Each split contains 600 samples: 200 base questions × 3 modalities (L, V, VL).
194
 
195
  ## Usage
196
 
@@ -204,16 +204,15 @@ dataset = load_dataset("lilvjosephtang/SEAM-Benchmark")
204
  chess_fork = dataset["fork"] # Chess fork detection (600 samples)
205
  chemistry_carbon = dataset["carbon"] # Carbon atom counting (600 samples)
206
 
207
- # Filter by modality within a task
208
- language_only = chess_fork.filter(lambda x: x["modality"] == "Language")
209
- vision_only = chess_fork.filter(lambda x: x["modality"] == "Vision")
210
- vision_language = chess_fork.filter(lambda x: x["modality"] == "Vision-Language")
211
 
212
  # Example sample structure
213
  sample = chess_fork[0]
214
  print(f"Task: {sample['task']}")
215
  print(f"Domain: {sample['domain']}")
216
- print(f"Modality: {sample['modality']}")
217
  print(f"Question: {sample['question']}")
218
  print(f"Options: A) {sample['option_a']}, B) {sample['option_b']}, C) {sample['option_c']}, D) {sample['option_d']}")
219
  print(f"Correct Answer: {sample['correct_answer']}")
@@ -226,7 +225,7 @@ print(f"Notation: {sample['notation']}") # FEN string for chess
226
  Each sample contains:
227
  - `task`: Task identifier (e.g., "fork", "carbon")
228
  - `domain`: Domain category ("chess", "chemistry", "music", "graph")
229
- - `modality`: Evaluation modality ("Language", "Vision", "Vision-Language")
230
  - `index`: Sample index within the task
231
  - `question`: Question text (if applicable)
232
  - `notation`: Domain-specific notation (FEN, SMILES, ABC, adjacency matrix)
@@ -234,7 +233,7 @@ Each sample contains:
234
  - `option_a`, `option_b`, `option_c`, `option_d`: Multiple choice options
235
  - `correct_answer`: The correct answer
236
  - `correct_idx`: Index of the correct option
237
- - `image`: Associated image (PIL Image for Vision/Vision-Language modalities, None for Language)
238
 
239
  ## Evaluation Protocol
240
 
 
27
  dtype: int32
28
  - name: question_type
29
  dtype: string
30
+ - name: question
31
+ dtype: string
32
+ - name: notation
33
+ dtype: string
34
+ - name: notation_type
35
+ dtype: string
36
  - name: option_a
37
  dtype: string
38
  - name: option_b
 
45
  dtype: string
46
  - name: correct_idx
47
  dtype: int32
 
 
 
 
 
 
48
  - name: image
49
  dtype: image
50
  splits:
51
  - name: fork
52
+ num_bytes: 0
53
  num_examples: 200
54
  - name: legal
55
+ num_bytes: 0
56
  num_examples: 200
57
  - name: puzzle
58
+ num_bytes: 0
59
  num_examples: 200
60
  - name: eval
61
+ num_bytes: 0
62
  num_examples: 200
63
  - name: carbon
64
+ num_bytes: 0
65
  num_examples: 200
66
  - name: hydrogen
67
+ num_bytes: 0
68
  num_examples: 200
69
  - name: weight
70
+ num_bytes: 0
71
  num_examples: 200
72
  - name: caption
73
+ num_bytes: 0
74
  num_examples: 200
75
  - name: notes
76
+ num_bytes: 0
77
  num_examples: 200
78
  - name: measures
79
+ num_bytes: 0
80
  num_examples: 200
81
  - name: forms
82
+ num_bytes: 0
83
  num_examples: 200
84
  - name: rhythm
85
+ num_bytes: 0
86
  num_examples: 200
87
  - name: path_counting
88
+ num_bytes: 0
89
  num_examples: 200
90
  - name: path_existence
91
+ num_bytes: 0
92
  num_examples: 200
93
  - name: shortest_path
94
+ num_bytes: 0
95
  num_examples: 200
96
  - name: bfs_traversal
97
+ num_bytes: 0
98
  num_examples: 200
99
+ download_size: 0
100
+ dataset_size: 0
101
  configs:
102
  - config_name: default
103
  data_files:
 
155
  - **4 Domains**: Chess, Chemistry, Music, Graph Theory with standardized notations
156
  - **16 Tasks**: 4 tasks per domain (64 total task-modality combinations)
157
  - **3 Modalities**: Language-only (L), Vision-only (V), Vision-Language (VL)
158
+ - **3,200 Base Samples**: 200 samples × 16 tasks
159
+ - **9,600 Evaluations**: TaskLoader generates 3 modality-specific prompts per base sample
160
  - **Semantic Equivalence**: Same information presented in different representational formats
161
 
162
  ## Domains and Notation Systems
 
190
  - **Music**: `notes`, `measures`, `forms`, `rhythm`
191
  - **Graph Theory**: `path_counting`, `path_existence`, `shortest_path`, `bfs_traversal`
192
 
193
+ Each split contains 200 base samples. TaskLoader generates modality-specific prompts (L, V, VL) from these base samples.
194
 
195
  ## Usage
196
 
 
204
  chess_fork = dataset["fork"] # Chess fork detection (600 samples)
205
  chemistry_carbon = dataset["carbon"] # Carbon atom counting (600 samples)
206
 
207
+ # Each task contains 200 base samples
208
+ # TaskLoader generates modality-specific prompts (L/V/VL) from these base samples
209
+ print(f"Task {chess_fork[0]['task']} has {len(chess_fork)} base samples")
 
210
 
211
  # Example sample structure
212
  sample = chess_fork[0]
213
  print(f"Task: {sample['task']}")
214
  print(f"Domain: {sample['domain']}")
215
+ # No modality field - TaskLoader handles modality generation
216
  print(f"Question: {sample['question']}")
217
  print(f"Options: A) {sample['option_a']}, B) {sample['option_b']}, C) {sample['option_c']}, D) {sample['option_d']}")
218
  print(f"Correct Answer: {sample['correct_answer']}")
 
225
  Each sample contains:
226
  - `task`: Task identifier (e.g., "fork", "carbon")
227
  - `domain`: Domain category ("chess", "chemistry", "music", "graph")
228
+ - No modality field (TaskLoader generates modality-specific prompts)
229
  - `index`: Sample index within the task
230
  - `question`: Question text (if applicable)
231
  - `notation`: Domain-specific notation (FEN, SMILES, ABC, adjacency matrix)
 
233
  - `option_a`, `option_b`, `option_c`, `option_d`: Multiple choice options
234
  - `correct_answer`: The correct answer
235
  - `correct_idx`: Index of the correct option
236
+ - `image`: Associated image (PIL Image, None for base storage - TaskLoader handles image loading for V/VL modalities)
237
 
238
  ## Evaluation Protocol
239