Datasets:
File size: 3,971 Bytes
25a1c45 a5a87fa 314aaff a5a87fa 25a1c45 a5a87fa 82dc1c9 a5a87fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
sequence: int64
splits:
- name: train
num_bytes: 51027416699.38
num_examples: 8716
- name: validation
num_bytes: 14065562052.042
num_examples: 2886
- name: test
num_bytes: 13973797429.51
num_examples: 2890
download_size: 35506863059
dataset_size: 79066776180.93199
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
task_categories:
- image-classification
tags:
- marine biology
- biodiversity
- ecology
- conservation
- citizen science
- coral reef
license: cc0-1.0
size_categories:
- 10K<n<100K
---
# Seatizen Atlas Image Dataset
---
## Dataset Card
**Dataset Name:** Seatizen Atlas Image Dataset
**Task:** Multi-label image classification
**Domain:** Marine Biodiversity
**License:** cc0-1.0
**Size:** 14,492 annotated images
---
## Description
The **Seatizen Atlas Image Dataset** is a large-scale collection of annotated underwater images designed for training and evaluating artificial intelligence models in marine biodiversity research. It is specifically tailored for multi-label image classification tasks.
This dataset was curated by selecting only classes with more than 200 annotations to facilitate the training of computer vision models. For more information about the Seatizen Atlas Dataset, please refer to the [Data paper](https://www.nature.com/articles/s41597-024-04267-z#Sec20) and the [Zenodo repository](https://zenodo.org/records/13951614).
## Acquisition Details
Underwater data acquisition was carried out using instrumented marine platforms. These platforms can be divided into two groups: citizen platforms and scientific platforms.
- **Citizen platforms** paddleboards, kitesurfs, snorkeling masks equipped with cameras. Images were collected by the "Seatizen" team to promote citizen science involvement in marine research.
- **Scientific platforms** Autonomous Surface Vehicles (ASV) equipped with a camera.
## Dataset Structure
The Seatizen Atlas Image Dataset is organized as follows:
- **Train split:** 8716 images
- **Validation split:** 2886 images
- **Test split:** 2890 images

---
## List of Annotated Classes
31 classes were grouped into five main categories:
### Algae
- Algal Assemblage
- Algae Halimeda
- Algae Coralline
- Algae Turf
### Coral
- Acropora Branching
- Acropora Digitate
- Acropora Submassive
- Acropora Tabular
- Bleached Coral
- Dead Coral
- Living Coral
- Non-acropora Millepora
- Non-acropora Encrusting
- Non-acropora Foliose
- Non-acropora Massive
- Non-acropora Coral Free
- Non-acropora Submassive
### Seagrass
- Syringodium isoetifolium
- Thalassodendron ciliatum
### Habitat
- Rock
- Rubble
- Sand
### Other Organisms and Custom Classes
- Atra/Leucospilota
- Blurred
- Fish
- Homo Sapiens
- Human Object
- Sea Cucumber
- Sea Urchin
- Sponges
- Useless
More detailed information about the dataset classes, including full descriptions and examples of annotated images, can be found in the supplementary material [available here](https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-024-04267-z/MediaObjects/41597_2024_4267_MOESM1_ESM.pdf).
---
## Citation
If you use the Seatizen Atlas Image Dataset in your research, please consider cite the following:
```bibtex
@article{contini2025seatizen,
title={Seatizen Atlas: a collaborative dataset of underwater and aerial marine imagery},
author={Contini, Matteo and Illien, Victor and Julien, Mohan and Ravitchandirane, Mervyn and Russias, Victor and Lazennec, Arthur and Chevrier, Thomas and Rintz, Cam Ly and Carpentier, L{\'e}anne and Gogendeau, Pierre and others},
journal={Scientific Data},
volume={12},
number={1},
pages={67},
year={2025},
publisher={Nature Publishing Group UK London}
}
|