Datasets:

License:
File size: 5,519 Bytes
21ebc85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
import os
import json
import argparse

import numpy as np
import pandas as pd
import soundfile as sf
from tqdm import tqdm

def generate_split_jsonl(data_path: str, split_name: str, tags: np.ndarray, binary: np.ndarray):
    """
    Reads {split_name}.tsv, processes all .mp3 files, and generates MTT.{split_name}.jsonl.
    Includes error handling, a progress bar, and bitrate calculation for MP3s.
    """
    mt_dir = data_path
    tsv_path = os.path.join(mt_dir, f'{split_name}.tsv')
    if split_name == "valid":
        out_split_name = "val"
    else:
        out_split_name = split_name
    out_path = os.path.join(mt_dir, f'MTT.{out_split_name}.jsonl')
    fail_log_path = os.path.join(mt_dir, f'fail.{out_split_name}.txt')

    # Read index and filenames
    df = pd.read_csv(tsv_path, sep='\t', header=None, names=['idx', 'title'])

    failed_count = 0
    failed_records = []

    print(f"Processing split: {split_name}")
    with open(out_path, 'w', encoding='utf-8') as fw:
        # Use tqdm for a progress bar
        for _, row in tqdm(df.iterrows(), total=df.shape[0], desc=f"-> Generating {split_name}.jsonl"):
            try:
                i = int(row['idx'])
                title = row['title']  # e.g., "48/948.low.mp3"
                audio_path = os.path.join(mt_dir, 'mp3', title)

                # Read audio metadata (supports .mp3)
                info = sf.info(audio_path)
                duration = info.frames / info.samplerate
                num_samples = info.frames
                sample_rate = info.samplerate
                channels = info.channels

                # --- MODIFICATION START ---
                # Calculate bitrate, which is more meaningful for compressed formats like MP3
                bitrate = None
                # Check if duration is valid to avoid division by zero
                if duration > 0:
                    try:
                        file_size_bytes = os.path.getsize(audio_path)
                        # Bitrate in bits per second (bps)
                        bitrate = int((file_size_bytes * 8) / duration)
                    except OSError:
                        # File might not exist or other OS-level error
                        pass
                
                # Infer bit depth from subtype, will be None for mp3
                bit_depth = None
                if hasattr(info, 'subtype') and info.subtype and info.subtype.startswith('PCM_'):
                    try:
                        bit_depth = int(info.subtype.split('_', 1)[1])
                    except (ValueError, IndexError):
                        pass # Could not parse bit depth from subtype
                # --- MODIFICATION END ---

                # Get the list of labels for this sample
                labels = tags[binary[i].astype(bool)].tolist()

                # Assemble the JSON object and write to file
                record = {
                    "audio_path":  audio_path,
                    "label":       labels,
                    "duration":    duration,
                    "sample_rate": sample_rate,
                    "num_samples": num_samples,
                    "bit_depth":   bit_depth,   # This will be null for MP3 files
                    "bitrate":     bitrate,     # This is the newly added field
                    "channels":    channels
                }
                fw.write(json.dumps(record, ensure_ascii=False) + "\n")

            except Exception as e:
                # If any error occurs, log it and skip the file
                failed_count += 1
                failed_records.append(f"File: {title}, Error: {str(e)}")
                continue

    print(f"Successfully generated {out_path}")

    # After the loop, report and log any failures
    if failed_count > 0:
        print(f"Skipped {failed_count} corrupted or problematic files for split '{split_name}'.")
        # Append failures to fail.txt
        with open(fail_log_path, 'a', encoding='utf-8') as f_fail:
            f_fail.write(f"--- Failures for split: {split_name} ({failed_count} files) ---\n")
            for record in failed_records:
                f_fail.write(record + "\n")
            f_fail.write("\n")

def main():
    parser = argparse.ArgumentParser(
        description="Generate JSONL files for MTT dataset splits (train/valid/test) for .mp3 files.")
    parser.add_argument(
        "data_path",
        help="Root directory of the MTT dataset, containing annotations, tags, labels, and tsv splits.")
    args = parser.parse_args()

    mt_dir = args.data_path

    # Use a generic failure log name that doesn't need to be cleaned for each split
    fail_log_path = os.path.join(mt_dir, 'processing_failures.log')
    if os.path.exists(fail_log_path):
        os.remove(fail_log_path)
        print(f"Removed old log file: {fail_log_path}")

    try:
        # Load tags and binary label matrix
        tags = np.load(os.path.join(mt_dir, 'tags.npy'))
        binary = np.load(os.path.join(mt_dir, 'binary_label.npy'))
    except FileNotFoundError as e:
        print(f"Error: Could not find required .npy file. {e}")
        return

    # Generate JSONL for each split
    for split in ['train', 'valid', 'test']:
        generate_split_jsonl(args.data_path, split, tags, binary)

    print("\nProcessing complete.")
    if os.path.exists(fail_log_path):
        print(f"A log of all failed files has been saved to: {fail_log_path}")

if __name__ == "__main__":
    main()