#!/usr/bin/env python3 import os import json import argparse import numpy as np import pandas as pd import soundfile as sf from tqdm import tqdm def generate_split_jsonl(data_path: str, split_name: str, tags: np.ndarray, binary: np.ndarray): """ Reads {split_name}.tsv, processes all .mp3 files, and generates MTT.{split_name}.jsonl. Includes error handling, a progress bar, and bitrate calculation for MP3s. """ mt_dir = data_path tsv_path = os.path.join(mt_dir, f'{split_name}.tsv') if split_name == "valid": out_split_name = "val" else: out_split_name = split_name out_path = os.path.join(mt_dir, f'MTT.{out_split_name}.jsonl') fail_log_path = os.path.join(mt_dir, f'fail.{out_split_name}.txt') # Read index and filenames df = pd.read_csv(tsv_path, sep='\t', header=None, names=['idx', 'title']) failed_count = 0 failed_records = [] print(f"Processing split: {split_name}") with open(out_path, 'w', encoding='utf-8') as fw: # Use tqdm for a progress bar for _, row in tqdm(df.iterrows(), total=df.shape[0], desc=f"-> Generating {split_name}.jsonl"): try: i = int(row['idx']) title = row['title'] # e.g., "48/948.low.mp3" audio_path = os.path.join(mt_dir, 'mp3', title) # Read audio metadata (supports .mp3) info = sf.info(audio_path) duration = info.frames / info.samplerate num_samples = info.frames sample_rate = info.samplerate channels = info.channels # --- MODIFICATION START --- # Calculate bitrate, which is more meaningful for compressed formats like MP3 bitrate = None # Check if duration is valid to avoid division by zero if duration > 0: try: file_size_bytes = os.path.getsize(audio_path) # Bitrate in bits per second (bps) bitrate = int((file_size_bytes * 8) / duration) except OSError: # File might not exist or other OS-level error pass # Infer bit depth from subtype, will be None for mp3 bit_depth = None if hasattr(info, 'subtype') and info.subtype and info.subtype.startswith('PCM_'): try: bit_depth = int(info.subtype.split('_', 1)[1]) except (ValueError, IndexError): pass # Could not parse bit depth from subtype # --- MODIFICATION END --- # Get the list of labels for this sample labels = tags[binary[i].astype(bool)].tolist() # Assemble the JSON object and write to file record = { "audio_path": audio_path, "label": labels, "duration": duration, "sample_rate": sample_rate, "num_samples": num_samples, "bit_depth": bit_depth, # This will be null for MP3 files "bitrate": bitrate, # This is the newly added field "channels": channels } fw.write(json.dumps(record, ensure_ascii=False) + "\n") except Exception as e: # If any error occurs, log it and skip the file failed_count += 1 failed_records.append(f"File: {title}, Error: {str(e)}") continue print(f"Successfully generated {out_path}") # After the loop, report and log any failures if failed_count > 0: print(f"Skipped {failed_count} corrupted or problematic files for split '{split_name}'.") # Append failures to fail.txt with open(fail_log_path, 'a', encoding='utf-8') as f_fail: f_fail.write(f"--- Failures for split: {split_name} ({failed_count} files) ---\n") for record in failed_records: f_fail.write(record + "\n") f_fail.write("\n") def main(): parser = argparse.ArgumentParser( description="Generate JSONL files for MTT dataset splits (train/valid/test) for .mp3 files.") parser.add_argument( "data_path", help="Root directory of the MTT dataset, containing annotations, tags, labels, and tsv splits.") args = parser.parse_args() mt_dir = args.data_path # Use a generic failure log name that doesn't need to be cleaned for each split fail_log_path = os.path.join(mt_dir, 'processing_failures.log') if os.path.exists(fail_log_path): os.remove(fail_log_path) print(f"Removed old log file: {fail_log_path}") try: # Load tags and binary label matrix tags = np.load(os.path.join(mt_dir, 'tags.npy')) binary = np.load(os.path.join(mt_dir, 'binary_label.npy')) except FileNotFoundError as e: print(f"Error: Could not find required .npy file. {e}") return # Generate JSONL for each split for split in ['train', 'valid', 'test']: generate_split_jsonl(args.data_path, split, tags, binary) print("\nProcessing complete.") if os.path.exists(fail_log_path): print(f"A log of all failed files has been saved to: {fail_log_path}") if __name__ == "__main__": main()