|
import json |
|
from typing import List |
|
|
|
import datasets |
|
from datasets import ClassLabel, Value, load_dataset |
|
|
|
_LANGUAGES = ["en", "fr", "it", "es", "de"] |
|
|
|
_SUB_CLASSES = [ |
|
"anger", |
|
"fear", |
|
"joy", |
|
"love", |
|
"sadness", |
|
"surprise", |
|
"neutral", |
|
] |
|
|
|
_CLASS_NAMES = [ |
|
"no emotion", |
|
"happiness", |
|
"admiration", |
|
"amusement", |
|
"anger", |
|
"annoyance", |
|
"approval", |
|
"caring", |
|
"confusion", |
|
"curiosity", |
|
"desire", |
|
"disappointment", |
|
"disapproval", |
|
"disgust", |
|
"embarrassment", |
|
"excitement", |
|
"fear", |
|
"gratitude", |
|
"grief", |
|
"joy", |
|
"love", |
|
"nervousness", |
|
"optimism", |
|
"pride", |
|
"realization", |
|
"relief", |
|
"remorse", |
|
"sadness", |
|
"surprise", |
|
"neutral", |
|
] |
|
|
|
|
|
class EmotionsDatasetConfig(datasets.BuilderConfig): |
|
def __init__(self, features, label_classes, **kwargs): |
|
super().__init__(**kwargs) |
|
self.features = features |
|
self.label_classes = label_classes |
|
|
|
|
|
class EmotionsDataset(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
EmotionsDatasetConfig( |
|
name="raw", |
|
label_classes=_SUB_CLASSES, |
|
features=["text", "label", "dataset", "license"], |
|
), |
|
EmotionsDatasetConfig( |
|
name="split", |
|
label_classes=_SUB_CLASSES, |
|
features=["text", "label", "dataset", "license", "language"], |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "split" |
|
|
|
def _info(self): |
|
features = { |
|
"id": datasets.Value("string"), |
|
"text": Value(dtype="string", id=None), |
|
"label": ClassLabel(names=_SUB_CLASSES, id=None), |
|
"dataset": Value(dtype="string", id=None), |
|
"license": Value(dtype="string", id=None), |
|
} |
|
if self.config.name == "split": |
|
features.update({"language": ClassLabel(names=_LANGUAGES, id=None)}) |
|
return datasets.DatasetInfo(features=datasets.Features(features)) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
splits = [] |
|
if self.config.name == "raw": |
|
downloaded_files = dl_manager.download_and_extract( |
|
["data/many_emotions.json.gz"] |
|
) |
|
for lang in _LANGUAGES: |
|
splits.append( |
|
datasets.SplitGenerator( |
|
name=lang, |
|
gen_kwargs={ |
|
"filepaths": downloaded_files, |
|
"language": lang, |
|
"dataset": "raw", |
|
}, |
|
) |
|
) |
|
else: |
|
for split in ["train", "validation", "test"]: |
|
downloaded_files = dl_manager.download_and_extract( |
|
[f"data/split_dataset_{split}.jsonl.gz"] |
|
) |
|
splits.append( |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={"filepaths": downloaded_files, "dataset": "split"}, |
|
) |
|
) |
|
return splits |
|
|
|
def _generate_examples(self, filepaths, dataset, license=None, language=None): |
|
if dataset == "raw": |
|
for i, filepath in enumerate(filepaths): |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
example = json.loads(line) |
|
if language != "all": |
|
example = { |
|
"id": example["id"], |
|
"text": example[ |
|
"text" if language == "en" else language |
|
], |
|
"label": example["label"], |
|
"dataset": example["dataset"], |
|
"license": example["license"], |
|
} |
|
label = _CLASS_NAMES[example["label"]] |
|
if label == "no emotion": |
|
label = "neutral" |
|
elif label == "happiness": |
|
label = "joy" |
|
example.update({"label": label}) |
|
yield example["id"], example |
|
else: |
|
for i, filepath in enumerate(filepaths): |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
example = json.loads(line) |
|
yield example["id"], example |
|
|
|
|
|
if __name__ == "__main__": |
|
dataset = load_dataset("ma2za/many_emotions", name="raw") |
|
print() |
|
|