Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -172,7 +172,7 @@ then load, featurize, split, fit, and evaluate the catboost model
|
|
172 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
173 |
|
174 |
model = load_model_from_dict({
|
175 |
-
"name": "
|
176 |
"config": {
|
177 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
178 |
"y_features": ['Solubility']}})
|
@@ -180,11 +180,11 @@ then load, featurize, split, fit, and evaluate the catboost model
|
|
180 |
model.train(split_featurised_dataset["train"])
|
181 |
preds = model.predict(split_featurised_dataset["test"])
|
182 |
|
183 |
-
|
184 |
|
185 |
-
scores =
|
186 |
references=split_featurised_dataset["test"]['Solubility'],
|
187 |
-
predictions=preds["
|
188 |
|
189 |
|
190 |
## Aqueous Solubility Data Curation
|
|
|
172 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
173 |
|
174 |
model = load_model_from_dict({
|
175 |
+
"name": "cat_boost_regressor",
|
176 |
"config": {
|
177 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
178 |
"y_features": ['Solubility']}})
|
|
|
180 |
model.train(split_featurised_dataset["train"])
|
181 |
preds = model.predict(split_featurised_dataset["test"])
|
182 |
|
183 |
+
regression_suite = load_suite("regression")
|
184 |
|
185 |
+
scores = regression_suite.compute(
|
186 |
references=split_featurised_dataset["test"]['Solubility'],
|
187 |
+
predictions=preds["cat_boost_regressor::Solubility"])
|
188 |
|
189 |
|
190 |
## Aqueous Solubility Data Curation
|