--- language: en license: mit source_datasets: curated task_categories: - tabular-regression tags: - chemistry - cheminformatics pretty_name: Aqueous Solubility Database (AqSolDB) dataset_summary: >- Solubility values of 9,982 unique compounds curated from 9 different publicly available aqueous solubility datasets. citation: >- @article{ author = {Murat Cihan Sorkun, Abhishek Khetan \& Süleyman Er}, title = {AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds}, journal = {Scientific Data}, year = {2019}, volume = {6}, number = {143}, month = {aug}, url = {https://www.nature.com/articles/s41597-019-0151-1}, publisher = {Springer Nature} size_categories: - 1K>> import datasets and load one of the `AqSolDB` datasets, e.g., >>> AqSolDB = datasets.load_dataset("maomlab/AqSolDB", name = "AqSolDB") Downloading readme: 100%|████████████████████| 10.2k/10.2k [00:00<00:00, 4.41MB/s] Downloading data: 100%|█████████████████████████| 972k/972k [00:02<00:00, 432kB/s] Downloading data: 100%|██████████████████████| 2.88M/2.88M [00:01<00:00, 1.92MB/s] Generating test split: 100%|████████| 2494/2494 [00:00<00:00, 44727.48 examples/s] Generating train split: 100%|██████| 7488/7488 [00:00<00:00, 144316.82 examples/s] and inspecting the loaded dataset >>> AqSolDB AqSolDB DatasetDict({ test: Dataset({ features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Solubility', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\ ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'], num_rows: 2494 }) train: Dataset({ features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Solubility', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\ ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'], num_rows: 7488 }) }) ### Use a dataset to train a model One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support pip install 'molflux[catboost,rdkit]' then load, featurize, split, fit, and evaluate the catboost model import json from datasets import load_dataset from molflux.datasets import featurise_dataset from molflux.features import load_from_dicts as load_representations_from_dicts from molflux.splits import load_from_dict as load_split_from_dict from molflux.modelzoo import load_from_dict as load_model_from_dict from molflux.metrics import load_suite split_dataset = load_dataset('maomlab/AqSolDB') split_featurised_dataset = featurise_dataset( split_dataset, column = "SMILES", representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) model = load_model_from_dict({ "name": "cat_boost_regressor", "config": { "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], "y_features": ['Solubility']}}) model.train(split_featurised_dataset["train"]) preds = model.predict(split_featurised_dataset["test"]) regression_suite = load_suite("regression") scores = regression_suite.compute( references=split_featurised_dataset["test"]['Solubility'], predictions=preds["cat_boost_regressor::Solubility"]) ## Aqueous Solubility Data Curation ### Overview This repository has been developed in order to curate various aqueous solubility datasets into a broad and extensive dataset called AqSolDB. The curation process in this work can be accomplished by executing two python scripts in the given sequence: data-preprocess.py - for pre-processing the raw data set to a standardized format data-curation.py - for merging the standardized datasets, assigning reliability lables and adding 2D descriptors These two python scripts call upon functions from other python modules that are defined in: preprocess.py merge.py descriptors.py Further information about curation process can be found in the associated manuscript. ## Examples ### data-preprocess.py This file converts 2 example sub-datasets (25 instances from raw forms of dataset-A[1] and dataset-H[6]) which are then converted into a standardized format. (This is an example how to preprocess datasets. The preporcessed data files already in the data folder.) inputs: raw-dataset-A.csv (various solubility metrics (g/L, mg/L..) with Name and CAS Number) raw-dataset-H.csv (has solubility values(LogS) with SLN representations) outputs: dataset-A.csv dataset-H.csv Note To apply this method to your own dataset, perform the following steps: Check the available properties, representations, and solubility units of your dataset Select the suitable preprocessing methods from the "preprocess.py" module. ### data-curation.py This file curates, i.e., merges datasets, selects most reliable values among multiple occurences, and adds 2D descriptors from 9 different standardized datasets that are obtained after the pre-processing step. inputs: dataset-A.csv [1] dataset-B.csv [2] dataset-C.csv [3] dataset-D.csv [4] dataset-E.csv [5] dataset-F.csv [6] dataset-G.csv [7] dataset-H.csv [6] dataset-I.csv [8] outputs: dataset_curated.csv Note To apply this method, your input dataset should be in the standardized format (output of preprocessing) having following columns: ID Name InChI InChIKey SMILES Solubility Prediction ### Data splits The original AqSoDB dataset does not define splits, so here we have used the `Realistic Split` method described in [(Martin et al., 2018)](https://doi.org/10.1021/acs.jcim.7b00166). ### Citation TY  - JOUR AU  - Sorkun, Murat Cihan AU  - Khetan, Abhishek AU  - Er, S√ºleyman PY  - 2019 DA  - 2019/08/08 TI  - AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds JO  - Scientific Data SP  - 143 VL  - 6 IS  - 1 AB  - Water is a ubiquitous solvent in chemistry and life. It is therefore no surprise that the aqueous solubility of compounds has a key role in various domains, including but not limited to drug discovery, paint, coating, and battery materials design. Measurement and prediction of aqueous solubility is a complex and prevailing challenge in chemistry. For the latter, different data-driven prediction models have recently been developed to augment the physics-based modeling approaches. To construct accurate data-driven estimation models, it is essential that the underlying experimental calibration data used by these models is of high fidelity and quality. Existing solubility datasets show variance in the chemical space of compounds covered, measurement methods, experimental conditions, but also in the non-standard representations, size, and accessibility of data. To address this problem, we generated a new database of compounds, AqSolDB, by merging a total of nine different aqueous solubility datasets, curating the merged data, standardizing and validating the compound representation formats, marking with reliability labels, and providing 2D descriptors of compounds as a Supplementary Resource. SN  - 2052-4463 UR  - https://doi.org/10.1038/s41597-019-0151-1 DO  - 10.1038/s41597-019-0151-1 ID  - Sorkun2019 ER  - ```