marcosv commited on
Commit
4553686
·
verified ·
1 Parent(s): c5b6b70

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - RAW
5
+ - RGB
6
+ - ISP
7
+ - NTIRE
8
+ - '2025'
9
+ - image
10
+ - processing
11
+ - low-level
12
+ - vision
13
+ - cameras
14
+ pretty_name: RAW Image Restoration Dataset
15
+ size_categories:
16
+ - 100M<n<1B
17
+ ---
18
+
19
+ # RAW Image Restoration Dataset
20
+ ## [NTIRE 2025 RAW Image Restoration](https://codalab.lisn.upsaclay.fr/competitions/21647)
21
+
22
+ - Link to the challenge: https://codalab.lisn.upsaclay.fr/competitions/21647
23
+ - Link to the workshop: https://www.cvlai.net/ntire/2025/
24
+
25
+ This dataset includes images **different smartphones**: iPhoneX, SamsungS9, Samsung21, Google Pixel 7-9, Oppo vivo x90. You can use it for many tasks, these are some:
26
+ - Reconstruct RAW images from the sRGB counterpart
27
+ - Learn an ISP to process the RAW images into the sRGB (emulating the phone ISP)
28
+ - Add noise to the RAW images and train a denoiser
29
+ - Many more things :)
30
+
31
+ ### How are the RAW images?
32
+
33
+ - All the RAW images in this dataset have been standarized to follow a Bayer Pattern **RGGB**, and already white-black level corrected.
34
+ - Each RAW image was split into several crops of size `512x512x4`(`1024x1024x3` for the corresponding RGBs). You see the filename `{raw_id}_{patch_number}.npy`.
35
+ - For each RAW image, you can find the associated metadata `{raw_id}.pkl`.
36
+ - RGB images are the corresponding captures from the phone i.e., the phone imaging pipeline (ISP) output. The images are saved as lossless PNG 8bits.
37
+ - Scenes include indoor/outdoor, day/night, different ISO levels, different shutter speed levels.
38
+
39
+ ### How to use this?
40
+
41
+ - RAW images are saved using the following code:
42
+ ```
43
+ import numpy as np
44
+ max_val = 2**12 -1
45
+ raw = (raw * max_val).astype(np.uint16)
46
+ np.save(os.path.join(SAVE_PATH, f"raw.npy"), raw_patch)
47
+ ```
48
+ We save the images as `uint16` to preserve as much as precision as possible, while maintaining the filesize small.
49
+
50
+ - Therefore, you can load the RAW images in your Dataset class, and feed them into the model as follows:
51
+ ```
52
+ import numpy as np
53
+ raw = np.load("iphone-x-part2/0_3.npy")
54
+ max_val = 2**12 -1
55
+ raw = (raw / max_val).astype(np.float32)
56
+ ```
57
+
58
+ - The associated metadata can be loaded using:
59
+ ```
60
+ import pickle
61
+ with open("metadata.pkl", "rb") as f:
62
+ meta_loaded = pickle.load(f)
63
+
64
+ print (meta_loaded)
65
+ ```
66
+
67
+ ### Citation
68
+
69
+ Toward Efficient Deep Blind Raw Image Restoration, ICIP 2024
70
+
71
+ ```
72
+ @inproceedings{conde2024toward,
73
+ title={Toward Efficient Deep Blind Raw Image Restoration},
74
+ author={Conde, Marcos V and Vasluianu, Florin and Timofte, Radu},
75
+ booktitle={2024 IEEE International Conference on Image Processing (ICIP)},
76
+ pages={1725--1731},
77
+ year={2024},
78
+ organization={IEEE}
79
+ }
80
+ ```
81
+
82
+ Contact: [email protected]