mattmorgis commited on
Commit
6d6add1
·
verified ·
1 Parent(s): cc7e7f1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +17 -10
README.md CHANGED
@@ -38,13 +38,16 @@ This dataset contains two distinct subsets specifically designed for RAG applica
38
 
39
  This structure makes it ideal for building and evaluating RAG systems that retrieve relevant biomedical information from a corpus and generate accurate, evidence-based answers to complex biomedical questions.
40
 
 
 
41
  ## Dataset Structure
42
 
43
  The dataset contains three main components:
44
 
45
  1. **Corpus** (`data/corpus.jsonl`): A collection of PubMed abstracts including metadata.
46
 
47
- - Each line is a JSON object containing:
 
48
  - `id`: PubMed ID
49
  - `title`: Title of the paper
50
  - `text`: Abstract text
@@ -58,7 +61,8 @@ The dataset contains three main components:
58
 
59
  2. **Dev Questions** (`data/dev.jsonl`): Development set of biomedical questions.
60
 
61
- - Each line is a JSON object containing:
 
62
  - `question_id`: Unique identifier for the question
63
  - `question`: The question text
64
  - `answer`: Ideal answer
@@ -67,7 +71,7 @@ The dataset contains three main components:
67
  - `snippets`: Relevant snippets from abstracts
68
 
69
  3. **Eval Questions** (`data/eval.jsonl`): Eval set of biomedical questions.
70
- - Same structure as dev questions
71
 
72
  ## Usage
73
 
@@ -75,22 +79,25 @@ This dataset is designed for training and evaluating RAG systems for biomedical
75
 
76
  ### Loading the Dataset
77
 
78
- You can load the dataset using the Hugging Face `datasets` library:
79
 
80
  ```python
81
  from datasets import load_dataset
82
 
83
- # Load the entire dataset
84
- dataset = load_dataset("mattmorgis/bioasq-12b-rag-dataset")
 
 
 
85
 
86
- # Access the corpus
87
- corpus = dataset["text-corpus"]
88
 
89
  # Access the development questions
90
- dev_questions = dataset["question-answer-passages"]["dev"]
91
 
92
  # Access the eval questions
93
- eval_questions = dataset["question-answer-passages"]["eval"]
94
  ```
95
 
96
  ### Example RAG Application
 
38
 
39
  This structure makes it ideal for building and evaluating RAG systems that retrieve relevant biomedical information from a corpus and generate accurate, evidence-based answers to complex biomedical questions.
40
 
41
+ The code to generate this dataset is here: https://github.com/MattMorgis/bioasq-rag
42
+
43
  ## Dataset Structure
44
 
45
  The dataset contains three main components:
46
 
47
  1. **Corpus** (`data/corpus.jsonl`): A collection of PubMed abstracts including metadata.
48
 
49
+ - The corpus is accessible through the "train" split of the "text-corpus" config
50
+ - Each document contains:
51
  - `id`: PubMed ID
52
  - `title`: Title of the paper
53
  - `text`: Abstract text
 
61
 
62
  2. **Dev Questions** (`data/dev.jsonl`): Development set of biomedical questions.
63
 
64
+ - The dev questions are accessible through the "dev" split of the "question-answer-passages" config
65
+ - Each question contains:
66
  - `question_id`: Unique identifier for the question
67
  - `question`: The question text
68
  - `answer`: Ideal answer
 
71
  - `snippets`: Relevant snippets from abstracts
72
 
73
  3. **Eval Questions** (`data/eval.jsonl`): Eval set of biomedical questions.
74
+ - Same structure as dev questions, accessible through the "eval" split
75
 
76
  ## Usage
77
 
 
79
 
80
  ### Loading the Dataset
81
 
82
+ You can load the dataset using the Hugging Face `datasets` library. **Note that you must specify a config name**:
83
 
84
  ```python
85
  from datasets import load_dataset
86
 
87
+ # Load the corpus of PubMed abstracts
88
+ corpus_dataset = load_dataset("mattmorgis/bioasq-12b-rag", "text-corpus")
89
+
90
+ # Load the question-answer dataset
91
+ questions_dataset = load_dataset("mattmorgis/bioasq-12b-rag", "question-answer-passages")
92
 
93
+ # Access the corpus data (note: the corpus is stored in the "train" split)
94
+ corpus_docs = corpus_dataset["train"]
95
 
96
  # Access the development questions
97
+ dev_questions = questions_dataset["dev"]
98
 
99
  # Access the eval questions
100
+ eval_questions = questions_dataset["eval"]
101
  ```
102
 
103
  ### Example RAG Application