diff --git a/scripts/.ipynb_checkpoints/ViViT-checkpoint.ipynb b/scripts/.ipynb_checkpoints/ViViT-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..d2e733b0eefb667549e89ed5e78fc01305184980 --- /dev/null +++ b/scripts/.ipynb_checkpoints/ViViT-checkpoint.ipynb @@ -0,0 +1,829 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "18122027-63d4-45bc-a155-11d941da97b9", + "metadata": {}, + "outputs": [], + "source": [ + "DATASET_PATH = \"/media/khmt/HDD1/TQKhang/datasets/xarac\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bc5b5096-93dd-4661-bd32-e1c66a3facfc", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "59965104-6b47-4bd4-ae52-9924a91feed3", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "from torch.optim import AdamW\n", + "from video_transformers import VideoModel\n", + "from video_transformers.backbones.transformers import TransformersBackbone\n", + "from video_transformers.backbones.timm import TimmBackbone\n", + "from video_transformers.data import VideoDataModule\n", + "from video_transformers.heads import LinearHead\n", + "from video_transformers.trainer import trainer_factory" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2f5c18af-5a5a-4e6d-91dd-446123218792", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at facebook/timesformer-base-finetuned-k400 were not used when initializing TimesformerModel: ['classifier.weight', 'classifier.bias']\n", + "- This IS expected if you are initializing TimesformerModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing TimesformerModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", + "/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/transformers/models/videomae/feature_extraction_videomae.py:31: FutureWarning: The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use VideoMAEImageProcessor instead.\n", + " FutureWarning,\n" + ] + } + ], + "source": [ + "backbone = TransformersBackbone(\"facebook/timesformer-base-finetuned-k400\", num_unfrozen_stages=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "04eb1ed9-0497-48d0-a72e-7223939f257b", + "metadata": {}, + "outputs": [], + "source": [ + "datamodule = VideoDataModule(\n", + " train_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/train\",\n", + " val_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/val\",\n", + " test_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/val\",\n", + " batch_size=4,\n", + " num_workers=4,\n", + " num_timesteps=8,\n", + " preprocess_input_size=224,\n", + " preprocess_clip_duration=1,\n", + " preprocess_means=backbone.mean,\n", + " preprocess_stds=backbone.std,\n", + " preprocess_min_short_side=256,\n", + " preprocess_max_short_side=320,\n", + " preprocess_horizontal_flip_p=0.5,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "12b51c8e-8420-456a-96fb-a185165c990a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodule.num_classes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a6189aca-e28c-4147-8efc-fae604663d14", + "metadata": {}, + "outputs": [], + "source": [ + "head = LinearHead(hidden_size=backbone.num_features, num_classes=datamodule.num_classes)\n", + "model = VideoModel(backbone, head)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f3ed0a1e-d90c-49b1-a213-55815d0cdf15", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "VideoModel(\n", + " (backbone): TransformersBackbone(\n", + " (model): TimesformerModel(\n", + " (embeddings): TimesformerEmbeddings(\n", + " (patch_embeddings): TimesformerPatchEmbeddings(\n", + " (projection): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))\n", + " )\n", + " (pos_drop): Dropout(p=0.0, inplace=False)\n", + " (time_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (encoder): TimesformerEncoder(\n", + " (layer): ModuleList(\n", + " (0): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (1): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (2): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (3): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (4): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (5): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (6): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (7): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (8): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (9): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (10): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (11): TimesformerLayer(\n", + " (drop_path): Identity()\n", + " (attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): TimesformerIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): TimesformerOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " (temporal_attention): TimeSformerAttention(\n", + " (attention): TimesformerSelfAttention(\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=True)\n", + " (attn_drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): TimesformerSelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " )\n", + " )\n", + " (layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n", + " )\n", + " )\n", + " (head): LinearHead(\n", + " (linear): Linear(in_features=768, out_features=2, bias=True)\n", + " )\n", + ")" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a9d97e70-f539-4f34-8859-f69f1033a57e", + "metadata": {}, + "outputs": [], + "source": [ + "optimizer = AdamW(model.parameters(), lr=1e-4)\n", + "\n", + "Trainer = trainer_factory(\"single_label_classification\")\n", + "trainer = Trainer(datamodule, model, optimizer=optimizer, max_epochs=10, \n", + " mixed_precision=\"fp16\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "552054ca-55bd-4692-90ae-5f36b1c4d030", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trainable parameteres: 10045442\n", + "Total parameteres: 121260290\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 0 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:13<00:00, 2.30 batch/s, loss=0.6949, val/f1=0.488, train/f1=0.504]\n", + "Epoch 1 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:13<00:00, 2.29 batch/s, loss=0.5825, val/f1=0.738, train/f1=0.711]\n", + "Epoch 2 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:15<00:00, 2.23 batch/s, loss=0.4997, val/f1=0.755, train/f1=0.794]\n", + "Epoch 3 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.20 batch/s, loss=0.5583, val/f1=0.744, train/f1=0.813]\n", + "Epoch 4 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.20 batch/s, loss=0.5624, val/f1=0.711, train/f1=0.846]\n", + "Epoch 5 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.18 batch/s, loss=0.5908, val/f1=0.735, train/f1=0.857]\n", + "Epoch 6 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:17<00:00, 2.17 batch/s, loss=0.5492, val/f1=0.743, train/f1=0.846]\n", + "Epoch 7 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.19 batch/s, loss=0.5395, val/f1=0.752, train/f1=0.879]\n", + "Epoch 8 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.21 batch/s, loss=0.5304, val/f1=0.741, train/f1=0.886]\n", + "Epoch 9 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.20 batch/s, loss=0.5423, val/f1=0.758, train/f1=0.910]\n" + ] + } + ], + "source": [ + "trainer.fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7f378e22-d85b-4714-981e-4b68c3fdeb73", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['khongxarac', 'xarac']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodule.labels" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ef16f8e1-6ad1-446a-a817-b01d4259e60b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'num_timesteps': 8,\n", + " 'input_size': 224,\n", + " 'means': [0.45, 0.45, 0.45],\n", + " 'stds': [0.225, 0.225, 0.225],\n", + " 'min_short_side': 256,\n", + " 'max_short_side': 320,\n", + " 'horizontal_flip_p': 0.5,\n", + " 'clip_duration': 1}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodule.preprocessor_config" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8e9c61dc-8c52-4280-8a02-becadafd304b", + "metadata": {}, + "outputs": [], + "source": [ + "import os, glob\n", + "from pathlib import Path\n", + "from tqdm import tqdm\n", + "from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a215c096-f988-4cb8-a5bd-7d320cc0d86b", + "metadata": {}, + "outputs": [], + "source": [ + "test_loader = datamodule.test_dataloader\n", + "class_names = datamodule.labels" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "ba8fa1bc-3796-4076-ab46-ab1cbb44ce66", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Testing: 32it [00:12, 2.47it/s] \n" + ] + } + ], + "source": [ + "import torch\n", + "model.eval()\n", + "y_true, y_pred = [], []\n", + "with torch.no_grad():\n", + " for batch in tqdm(test_loader, desc=\"Testing\"):\n", + " inputs = batch[\"video\"].to(\"cuda\")\n", + " labels = batch[\"label\"].to(\"cuda\")\n", + " outputs = model(inputs)\n", + " probabilities = torch.nn.functional.softmax(outputs, dim=1)\n", + " predictions = probabilities.argmax(dim=-1)\n", + " y_true.extend(labels.cpu().tolist())\n", + " y_pred.extend(predictions.cpu().tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6fbcc06f-d230-4c46-9cd8-c2aa83aeca19", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.7692 | F1-macro: 0.7608\n", + " precision recall f1-score support\n", + "\n", + " khongxarac 0.79 0.82 0.81 68\n", + " xarac 0.74 0.69 0.72 49\n", + "\n", + " accuracy 0.77 117\n", + " macro avg 0.76 0.76 0.76 117\n", + "weighted avg 0.77 0.77 0.77 117\n", + "\n", + "Confusion matrix:\n", + " [[56 12]\n", + " [15 34]]\n" + ] + } + ], + "source": [ + "acc = accuracy_score(y_true, y_pred)\n", + "f1m = f1_score(y_true, y_pred, average=\"macro\")\n", + "print(f\"Accuracy: {acc:.4f} | F1-macro: {f1m:.4f}\")\n", + "print(classification_report(y_true, y_pred, target_names=class_names))\n", + "print(\"Confusion matrix:\\n\", confusion_matrix(y_true, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0b78a3c0-72ef-4207-bb66-03a8a3b02782", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7acdbc58-f8c8-4841-84c5-78fbe837f4fb", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "TQKhang-ViViT", + "language": "python", + "name": "tqkhang-vivit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/scripts/.ipynb_checkpoints/VideoMAE-checkpoint.ipynb b/scripts/.ipynb_checkpoints/VideoMAE-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..175ec1cabae4210a489ada604e53d90c4941ecae --- /dev/null +++ b/scripts/.ipynb_checkpoints/VideoMAE-checkpoint.ipynb @@ -0,0 +1,713 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "18122027-63d4-45bc-a155-11d941da97b9", + "metadata": {}, + "outputs": [], + "source": [ + "DATASET_PATH = \"/media/khmt/HDD1/TQKhang/datasets/xarac\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bc5b5096-93dd-4661-bd32-e1c66a3facfc", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "59965104-6b47-4bd4-ae52-9924a91feed3", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "from torch.optim import AdamW\n", + "from video_transformers import VideoModel\n", + "from video_transformers.backbones.transformers import TransformersBackbone\n", + "from video_transformers.backbones.timm import TimmBackbone\n", + "from video_transformers.data import VideoDataModule\n", + "from video_transformers.heads import LinearHead\n", + "from video_transformers.trainer import trainer_factory" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "2f5c18af-5a5a-4e6d-91dd-446123218792", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading: 22.9kB [00:00, 10.8MB/s]\n", + "Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 346M/346M [00:29<00:00, 11.9MB/s]\n", + "Some weights of the model checkpoint at MCG-NJU/videomae-base-finetuned-kinetics were not used when initializing VideoMAEModel: ['fc_norm.weight', 'fc_norm.bias', 'classifier.bias', 'classifier.weight']\n", + "- This IS expected if you are initializing VideoMAEModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing VideoMAEModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", + "Downloading: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 271/271 [00:00<00:00, 220kB/s]\n", + "/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/transformers/models/videomae/feature_extraction_videomae.py:31: FutureWarning: The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use VideoMAEImageProcessor instead.\n", + " FutureWarning,\n" + ] + } + ], + "source": [ + "backbone = TransformersBackbone(\"MCG-NJU/videomae-base-finetuned-kinetics\", num_unfrozen_stages=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "04eb1ed9-0497-48d0-a72e-7223939f257b", + "metadata": {}, + "outputs": [], + "source": [ + "datamodule = VideoDataModule(\n", + " train_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/train\",\n", + " val_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/val\",\n", + " test_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/val\",\n", + " batch_size=4,\n", + " num_workers=4,\n", + " num_timesteps=16,\n", + " preprocess_input_size=224,\n", + " preprocess_clip_duration=1,\n", + " preprocess_means=backbone.mean,\n", + " preprocess_stds=backbone.std,\n", + " preprocess_min_short_side=256,\n", + " preprocess_max_short_side=320,\n", + " preprocess_horizontal_flip_p=0.5,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "12b51c8e-8420-456a-96fb-a185165c990a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodule.num_classes" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a6189aca-e28c-4147-8efc-fae604663d14", + "metadata": {}, + "outputs": [], + "source": [ + "head = LinearHead(hidden_size=backbone.num_features, num_classes=datamodule.num_classes)\n", + "model = VideoModel(backbone, head)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "f3ed0a1e-d90c-49b1-a213-55815d0cdf15", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "VideoModel(\n", + " (backbone): TransformersBackbone(\n", + " (model): VideoMAEModel(\n", + " (embeddings): VideoMAEEmbeddings(\n", + " (patch_embeddings): VideoMAEPatchEmbeddings(\n", + " (projection): Conv3d(3, 768, kernel_size=(2, 16, 16), stride=(2, 16, 16))\n", + " )\n", + " )\n", + " (encoder): VideoMAEEncoder(\n", + " (layer): ModuleList(\n", + " (0): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (1): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (2): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (3): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (4): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (5): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (6): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (7): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (8): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (9): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (10): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " (11): VideoMAELayer(\n", + " (attention): VideoMAEAttention(\n", + " (attention): VideoMAESelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=False)\n", + " (key): Linear(in_features=768, out_features=768, bias=False)\n", + " (value): Linear(in_features=768, out_features=768, bias=False)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (output): VideoMAESelfOutput(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " (intermediate): VideoMAEIntermediate(\n", + " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", + " )\n", + " (output): VideoMAEOutput(\n", + " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (head): LinearHead(\n", + " (linear): Linear(in_features=768, out_features=2, bias=True)\n", + " )\n", + ")" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "a9d97e70-f539-4f34-8859-f69f1033a57e", + "metadata": {}, + "outputs": [], + "source": [ + "optimizer = AdamW(model.parameters(), lr=1e-4)\n", + "\n", + "Trainer = trainer_factory(\"single_label_classification\")\n", + "trainer = Trainer(datamodule, model, optimizer=optimizer, max_epochs=10, \n", + " mixed_precision=\"fp16\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "552054ca-55bd-4692-90ae-5f36b1c4d030", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trainable parameteres: 7088642\n", + "Total parameteres: 86227202\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 0 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:27<00:00, 1.92 batch/s, loss=0.9388, val/f1=0.483, train/f1=0.471]\n", + "Epoch 1 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:27<00:00, 1.91 batch/s, loss=0.5735, val/f1=0.755, train/f1=0.696]\n", + "Epoch 2 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:28<00:00, 1.89 batch/s, loss=0.5928, val/f1=0.727, train/f1=0.802]\n", + "Epoch 3 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:29<00:00, 1.87 batch/s, loss=0.5903, val/f1=0.737, train/f1=0.822]\n", + "Epoch 4 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:30<00:00, 1.86 batch/s, loss=0.5391, val/f1=0.769, train/f1=0.855]\n", + "Epoch 5 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:30<00:00, 1.85 batch/s, loss=0.6027, val/f1=0.767, train/f1=0.884]\n", + "Epoch 6 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:30<00:00, 1.85 batch/s, loss=0.5935, val/f1=0.754, train/f1=0.887]\n", + "Epoch 7 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:29<00:00, 1.87 batch/s, loss=0.5759, val/f1=0.740, train/f1=0.892]\n", + "Epoch 8 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:29<00:00, 1.88 batch/s, loss=0.6144, val/f1=0.746, train/f1=0.921]\n", + "Epoch 9 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:30<00:00, 1.85 batch/s, loss=0.5750, val/f1=0.740, train/f1=0.923]\n" + ] + } + ], + "source": [ + "trainer.fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "7f378e22-d85b-4714-981e-4b68c3fdeb73", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['khongxarac', 'xarac']" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodule.labels" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "ef16f8e1-6ad1-446a-a817-b01d4259e60b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'num_timesteps': 16,\n", + " 'input_size': 224,\n", + " 'means': [0.485, 0.456, 0.406],\n", + " 'stds': [0.229, 0.224, 0.225],\n", + " 'min_short_side': 256,\n", + " 'max_short_side': 320,\n", + " 'horizontal_flip_p': 0.5,\n", + " 'clip_duration': 1}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodule.preprocessor_config" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "8e9c61dc-8c52-4280-8a02-becadafd304b", + "metadata": {}, + "outputs": [], + "source": [ + "import os, glob\n", + "from pathlib import Path\n", + "from tqdm import tqdm\n", + "from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a215c096-f988-4cb8-a5bd-7d320cc0d86b", + "metadata": {}, + "outputs": [], + "source": [ + "test_loader = datamodule.test_dataloader\n", + "class_names = datamodule.labels" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "ba8fa1bc-3796-4076-ab46-ab1cbb44ce66", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Testing: 0%| | 0/30 [00:00\n", + "Traceback (most recent call last):\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1358, in __del__\n", + " self._shutdown_workers()\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1341, in _shutdown_workers\n", + " if w.is_alive():\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n", + " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", + "AssertionError: can only test a child process\n", + "Exception ignored in: \n", + "Traceback (most recent call last):\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1358, in __del__\n", + " self._shutdown_workers()\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1341, in _shutdown_workers\n", + " if w.is_alive():\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n", + " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", + "AssertionError: can only test a child process\n", + "Exception ignored in: \n", + "Traceback (most recent call last):\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1358, in __del__\n", + " self._shutdown_workers()\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1341, in _shutdown_workers\n", + " if w.is_alive():\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n", + " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", + "AssertionError: can only test a child process\n", + "Exception ignored in: \n", + "Traceback (most recent call last):\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1358, in __del__\n", + " self._shutdown_workers()\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1341, in _shutdown_workers\n", + " if w.is_alive():\n", + " File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n", + " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", + "AssertionError: can only test a child process\n", + "Testing: 32it [00:15, 2.06it/s] \n" + ] + } + ], + "source": [ + "import torch\n", + "model.eval()\n", + "y_true, y_pred = [], []\n", + "with torch.no_grad():\n", + " for batch in tqdm(test_loader, desc=\"Testing\"):\n", + " inputs = batch[\"video\"].to(\"cuda\")\n", + " labels = batch[\"label\"].to(\"cuda\")\n", + " outputs = model(inputs)\n", + " probabilities = torch.nn.functional.softmax(outputs, dim=1)\n", + " predictions = probabilities.argmax(dim=-1)\n", + " y_true.extend(labels.cpu().tolist())\n", + " y_pred.extend(predictions.cpu().tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "6fbcc06f-d230-4c46-9cd8-c2aa83aeca19", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.7607 | F1-macro: 0.7426\n", + " precision recall f1-score support\n", + "\n", + " khongxarac 0.75 0.88 0.81 68\n", + " xarac 0.78 0.59 0.67 49\n", + "\n", + " accuracy 0.76 117\n", + " macro avg 0.77 0.74 0.74 117\n", + "weighted avg 0.76 0.76 0.75 117\n", + "\n", + "Confusion matrix:\n", + " [[60 8]\n", + " [20 29]]\n" + ] + } + ], + "source": [ + "acc = accuracy_score(y_true, y_pred)\n", + "f1m = f1_score(y_true, y_pred, average=\"macro\")\n", + "print(f\"Accuracy: {acc:.4f} | F1-macro: {f1m:.4f}\")\n", + "print(classification_report(y_true, y_pred, target_names=class_names))\n", + "print(\"Confusion matrix:\\n\", confusion_matrix(y_true, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0b78a3c0-72ef-4207-bb66-03a8a3b02782", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "TQKhang-ViViT", + "language": "python", + "name": "tqkhang-vivit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/scripts/.ipynb_checkpoints/run_self_influence-checkpoint.sh b/scripts/.ipynb_checkpoints/run_self_influence-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..7c47fc254f53ca0633e6fcd8df916ef41239ed6a --- /dev/null +++ b/scripts/.ipynb_checkpoints/run_self_influence-checkpoint.sh @@ -0,0 +1,13 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36/f1/model_epoch_16_f1_0.7191.pth' + +python -m soups.self_influence \ + --seed 42 \ + --checkpoint_path "${CHECKPOINTS_DIR}" \ + --device cpu \ + --output_file self_influence_results/_test.json \ + --model timm/caformer_s36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --eval_batch_size 16 \ + --num_workers 8 \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/soup_caformer_b36-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_caformer_b36-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..16c3f44b58b4b2d21457af0619714f0f1557ffc0 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_caformer_b36-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/caformer_b36.sail_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_caformer_m36-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_caformer_m36-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..86ee8e6ab3336b11ce72394e8e120cca2ded55f6 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_caformer_m36-checkpoint.sh @@ -0,0 +1,17 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/f1-top8' \ + '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/loss-top8' \ + '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/accuracy-top8' \ + --model timm/caformer_m36.sail_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_caformer_s36-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_caformer_s36-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..75761677bb29933e1cb381a4ded129475d1bacfe --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_caformer_s36-checkpoint.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36/f1' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/caformer_s36.sail_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_coatnet_0-merged_4_15-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_coatnet_0-merged_4_15-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..472ed79bf4608e9e1cddb734d312cc498ee14133 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_coatnet_0-merged_4_15-checkpoint.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-43-44-coatnet_0_merged_4_15/loss' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_coatnet_0_co_teaching-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_coatnet_0_co_teaching-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..eae89e4247191c3517a66c2e4220edc233eeb1f3 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_coatnet_0_co_teaching-checkpoint.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_15-36-45-coatnet_0_co_teaching_forget_0_2/model_1_loss' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_coatnet_0_random-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_coatnet_0_random-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..5d75ca7f1ce1771c0b4bf405d2da77669e3a623c --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_coatnet_0_random-checkpoint.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-38-52-coatnet_0_random/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_coatnet_2-merged_4_15-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_coatnet_2-merged_4_15-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..72ffc51f169eaf2db2c7e184bdfda744beb236cb --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_coatnet_2-merged_4_15-checkpoint.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-57-11-coatnet_2_merged_4_15/loss' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_coatnet_2_random-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_coatnet_2_random-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..6b7b9ded346c15b4a272ff651b10c1357e37064c --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_coatnet_2_random-checkpoint.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-41-55-coatnet_2_random/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_convnext_base-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_convnext_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..8488a4ad833b0f40769cfbdc866771b7aa5a4e6c --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_convnext_base-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_16-27-06-convnext_base' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/convnext_base.fb_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_convnext_small-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_convnext_small-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..60e7f42450552125c937b230c7e687531dbf6c21 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_convnext_small-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-54-53-convnext_small' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/convnext_small.in12k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_convnext_tiny-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_convnext_tiny-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..bc28685d4f5923b78fb60c50d62390113d31a3c9 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_convnext_tiny-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-23-36-convnext_tiny' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/convnext_tiny.in12k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_eva02_base-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_eva02_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..9cce5b24d0fc1202374abf0cf30ef2670df4126e --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_eva02_base-checkpoint.sh @@ -0,0 +1,13 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_00-11-46-eva02_base/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/eva02_base_patch14_224.mim_in22k \ + --uniform_soup \ + --greedy_soup \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_eva02_large-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_eva02_large-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..33ac47a6e7d1231d675fa21d986fa18b6b798562 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_eva02_large-checkpoint.sh @@ -0,0 +1,16 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_01-21-34-eva02_large' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/eva02_large_patch14_224.mim_in22k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --eval_batch_size 4 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_eva02_small-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_eva02_small-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..10273d364c8fee7226da08927a790189d30bf63d --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_eva02_small-checkpoint.sh @@ -0,0 +1,16 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-20_14-45-41-eva02_small-reproduced' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/eva02_small_patch14_224.mim_in22k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --remove_duplicate_checkpoints \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_focalnet_base_srf-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_focalnet_base_srf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..78d9db06593002e6aacf42bad73a1d38227b346a --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_focalnet_base_srf-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-12-59-focalnet_base_srf/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_base_srf.ms_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_focalnet_small_lrf-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_focalnet_small_lrf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..4f9b341198726b646e2fb93772154208c3bee847 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_focalnet_small_lrf-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-43-07-focalnet_small_lrf/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_small_lrf.ms_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_focalnet_small_srf-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_focalnet_small_srf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..ceecaa9d4233fe52c40adc22a20a21be0b4d37ad --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_focalnet_small_srf-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_10-13-09-focalnet_small_srf/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_small_srf.ms_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_hgnetv2_b6_ssld_stage2-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_hgnetv2_b6_ssld_stage2-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..3584ee65b3cea396946b53d4c15468443f66fe05 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_hgnetv2_b6_ssld_stage2-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_11-57-53-hgnetv2_b6.ssld_stage2_ft_in1k-one_cycle_lr' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/hgnetv2_b6.ssld_stage2_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_maxvit_base-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_maxvit_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..acafa078f50609a1b39d28659aa0f66be5fbf74b --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_maxvit_base-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_15-07-03-maxvit_base' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/maxvit_base_tf_224.in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_swin-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_swin-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..0d51f100f7695ba5eec126e96f8956e217c1d2d4 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_swin-checkpoint.sh @@ -0,0 +1,14 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/accuracy' '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/f1' '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/loss' \ + --model timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_tiny_vit_21m-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_tiny_vit_21m-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..95c032ae4be61c0bacf5acb48d815771d68d648e --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_tiny_vit_21m-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_13-56-39-tiny_vit_21m_dist' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/tiny_vit_21m_224.dist_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_vit_base-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_vit_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..c65e839ebfe69b4707f132b26c61d6534ecffda8 --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_vit_base-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-27-15-vit_base' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/vit_base_patch16_224.augreg2_in21k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/soup_vit_base_laion2b-checkpoint.sh b/scripts/.ipynb_checkpoints/soup_vit_base_laion2b-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..76f43acf7ac0e12b21adb611a4e04a0398b8d47f --- /dev/null +++ b/scripts/.ipynb_checkpoints/soup_vit_base_laion2b-checkpoint.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-07-52-vit_base_laion2b' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/vit_base_patch16_clip_224.laion2b_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/.ipynb_checkpoints/test_caformer_b36-checkpoint.sh b/scripts/.ipynb_checkpoints/test_caformer_b36-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..41ea1b3699f8c1c8ead491b32d21f22e36047716 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_caformer_b36-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-14_09-18-13-caformer_b36-seed_7-one_cycle_lr' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/caformer_b36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_caformer_m36-checkpoint.sh b/scripts/.ipynb_checkpoints/test_caformer_m36-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..e3493e8fd32161ac1542cd9c841f5d27da3ae5f8 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_caformer_m36-checkpoint.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_paths '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/f1-top8' \ + '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/accuracy-top8' \ + '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/loss-top8' \ + --model timm/caformer_m36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_caformer_s36-checkpoint.sh b/scripts/.ipynb_checkpoints/test_caformer_s36-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..297965586487bc3cb80a1edfd764ce6a830dddd4 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_caformer_s36-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='//home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/caformer_s36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_coatnet_0-checkpoint.sh b/scripts/.ipynb_checkpoints/test_coatnet_0-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..665a9a2a42db324acd384ee72bcb19973d2e514f --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_coatnet_0-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-30-41-coatnet_0_filtered_1000' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_coatnet_0-merged_4_15-checkpoint.sh b/scripts/.ipynb_checkpoints/test_coatnet_0-merged_4_15-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..1b94a87e57e587b3c310ac2ffd7b888b10435b7a --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_coatnet_0-merged_4_15-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-43-44-coatnet_0_merged_4_15' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_coatnet_0_co_teaching-checkpoint.sh b/scripts/.ipynb_checkpoints/test_coatnet_0_co_teaching-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..05e347a83554a700d42e0011cff99161ede714cf --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_coatnet_0_co_teaching-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_15-36-45-coatnet_0_co_teaching_forget_0_2/model_1' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_coatnet_0_random-checkpoint.sh b/scripts/.ipynb_checkpoints/test_coatnet_0_random-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..a3279653c51e33b3f3fb35808ae1ad0a66597977 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_coatnet_0_random-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-38-52-coatnet_0_random' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_coatnet_2-merged_4_15-checkpoint.sh b/scripts/.ipynb_checkpoints/test_coatnet_2-merged_4_15-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..3d3793e7acfb9d89fbd6690ce9b8eb951dd1269a --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_coatnet_2-merged_4_15-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-57-11-coatnet_2_merged_4_15' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_coatnet_2_random-checkpoint.sh b/scripts/.ipynb_checkpoints/test_coatnet_2_random-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..4119e3ab228d1679f4e850098829179edaf8be5e --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_coatnet_2_random-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-41-55-coatnet_2_random' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_base-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..62834b0e96f1453495b2d4dd0f43c67a1fa4fb95 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_base-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_16-27-06-convnext_base' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_base.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_femto-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_femto-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..ddc4ce75f4ac9b96cb76720950257b9b115452ce --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_femto-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-31-58-convnext_femto' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_femto.d1_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_large-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_large-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..6301cbf830139d99efc553faadc72d14a2844f2a --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_large-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-11_16-47-37-convnext_large6' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_large.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_nano-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_nano-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..27efea615d0971d0e12e77806185226036d7cda3 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_nano-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-49-36-convnext_nano' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_nano.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_pico-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_pico-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..74260cf02cb0e40ae8ca1ba04e6ae316988ea3ca --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_pico-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-24-36-convnext_pico' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_pico.d1_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_small-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_small-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..7721056e8990e56eab3a2af9417dbdda45601ef5 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_small-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-54-53-convnext_small' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_small.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_tiny-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_tiny-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..3585f94c387a6f4de3613f5c5ec6672112ae2280 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_tiny-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-23-36-convnext_tiny' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_tiny.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_v2_large-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_v2_large-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..f837bd31509e6d46d468d77133e3e7924f209fc9 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_v2_large-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_17-25-36-convnext_v2_large' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnextv2_large.fcmae_ft_in22k_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_xlarge-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_xlarge-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..ff9bfe65bf524cffa86389190b915dfded0ef176 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_xlarge-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_11-58-22-convnext_xlarge' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_xlarge.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_convnext_xxlarge-checkpoint.sh b/scripts/.ipynb_checkpoints/test_convnext_xxlarge-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..f1ba700829e39f95b090101e0b367f32b939013d --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_convnext_xxlarge-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_13-53-47-convnext_xxlarge' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_eva02_base-checkpoint.sh b/scripts/.ipynb_checkpoints/test_eva02_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..816dccf33d07304ba710dc0c468b60563062b9b1 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_eva02_base-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_00-11-46-eva02_base' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/eva02_base_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_eva02_large-checkpoint.sh b/scripts/.ipynb_checkpoints/test_eva02_large-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..0b3ceba428c2cd179f43dce2496cb105c6d87968 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_eva02_large-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-14_00-21-30-eva02_large-one_cycle_lr' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/eva02_large_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_eva02_small-checkpoint.sh b/scripts/.ipynb_checkpoints/test_eva02_small-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..b722be2d2bf1650f3431f79ddde5a20df4b0c07e --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_eva02_small-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-20_14-45-41-eva02_small-reproduced' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_paths "$CHECKPOINTS_DIR" \ + --model timm/eva02_small_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_focalnet_base_srf-checkpoint.sh b/scripts/.ipynb_checkpoints/test_focalnet_base_srf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..26868217c396fb33e3eb5c1555db78dbb1eb42d7 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_focalnet_base_srf-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/media/khmt/HDD1/TQKhang/mthien/soups/checkpoints/2025-09-10_14-12-59-focalnet_base_srf' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_base_srf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_focalnet_small_lrf-checkpoint.sh b/scripts/.ipynb_checkpoints/test_focalnet_small_lrf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..d5f2d4f3fdc6a714ddade4c16dcbde02fa03adcf --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_focalnet_small_lrf-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/media/khmt/HDD1/TQKhang/mthien/soups/checkpoints/2025-09-10_14-43-07-focalnet_small_lrf' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_small_lrf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_focalnet_small_srf-checkpoint.sh b/scripts/.ipynb_checkpoints/test_focalnet_small_srf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..aeefdb7266720c51333fdecff723e98772c0c5f3 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_focalnet_small_srf-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_10-13-09-focalnet_small_srf' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_small_srf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_hgnetv2_b6_ssld_stage2-checkpoint.sh b/scripts/.ipynb_checkpoints/test_hgnetv2_b6_ssld_stage2-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..2b00524ec15012b20d4b21ded9cb86d822e7cc29 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_hgnetv2_b6_ssld_stage2-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_11-57-53-hgnetv2_b6.ssld_stage2_ft_in1k-one_cycle_lr' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/hgnetv2_b6.ssld_stage2_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_max_vit_base-checkpoint.sh b/scripts/.ipynb_checkpoints/test_max_vit_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..bb149323b65fe5abaebc3732706029d2f7d5e213 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_max_vit_base-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_15-07-03-maxvit_base' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/maxvit_base_tf_224.in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_swin-checkpoint.sh b/scripts/.ipynb_checkpoints/test_swin-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..32f853091945ec5f2de1899cc3c5825ab536148c --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_swin-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_23-24-08-swin_balanced_mixup_reversed_lambda' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_tiny_vit_21m-checkpoint.sh b/scripts/.ipynb_checkpoints/test_tiny_vit_21m-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..7610c1ecf84adecc0a3ac2bdb5473e43432cf629 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_tiny_vit_21m-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_14-27-40-tiny_vit_21m_dist_ich_16' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/tiny_vit_21m_224.dist_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_vit_base-checkpoint.sh b/scripts/.ipynb_checkpoints/test_vit_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..3a419442c1d5c9ff0a0ffc9617f3d0134660db14 --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_vit_base-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-27-15-vit_base' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/vit_base_patch16_224.augreg2_in21k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/test_vit_base_laion2b-checkpoint.sh b/scripts/.ipynb_checkpoints/test_vit_base_laion2b-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..f6ae240b3dfaa1c0239c36cd59e58c00a056d78b --- /dev/null +++ b/scripts/.ipynb_checkpoints/test_vit_base_laion2b-checkpoint.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-07-52-vit_base_laion2b' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/vit_base_patch16_clip_224.laion2b_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/.ipynb_checkpoints/train-checkpoint.sh b/scripts/.ipynb_checkpoints/train-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..2224eaab46305d35c3f3f6b379c580f95675505f --- /dev/null +++ b/scripts/.ipynb_checkpoints/train-checkpoint.sh @@ -0,0 +1,25 @@ +#!/usr/bin/env bash + +python -m soups.train \ + --seed 111 \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/seed-111/ICH-17-processed-3-seed-111 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 4 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name example_expr diff --git a/scripts/.ipynb_checkpoints/train-coatnet_0-merged_4_15-checkpoint.sh b/scripts/.ipynb_checkpoints/train-coatnet_0-merged_4_15-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..94a222e8fc9932e5a7e39d1a7576572f9ff96af8 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train-coatnet_0-merged_4_15-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --checkpoints_dir ./checkpoints-sync + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name ich-split-renamed-merged-4-15-coatnet-0 diff --git a/scripts/.ipynb_checkpoints/train-coatnet_2-merged_4_15-checkpoint.sh b/scripts/.ipynb_checkpoints/train-coatnet_2-merged_4_15-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..7391d3d8ef4113129bde482b229b190dcc85cc09 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train-coatnet_2-merged_4_15-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --checkpoints_dir ./checkpoints-sync + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name ich-split-renamed-merged-4-15-coatnet-0 diff --git a/scripts/.ipynb_checkpoints/train_caformer_b36-checkpoint.sh b/scripts/.ipynb_checkpoints/train_caformer_b36-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..50ee6f0d318561636e71b6bfc0780d1c4936e763 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_caformer_b36-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 7 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/caformer_b36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct_start 0.2 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name caformer_b36-seed_7-one_cycle_lr diff --git a/scripts/.ipynb_checkpoints/train_caformer_m36-checkpoint.sh b/scripts/.ipynb_checkpoints/train_caformer_m36-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..4342f090187d430cff9536233de3056f36b1b3bf --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_caformer_m36-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/caformer_m36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct 0.3 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 16 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name caformer_m36-one_cycle_lr diff --git a/scripts/.ipynb_checkpoints/train_coatnet_0-checkpoint.sh b/scripts/.ipynb_checkpoints/train_coatnet_0-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..a49b86153d55b1d14157bb5f1b1a43ee5aeb5e57 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_coatnet_0-checkpoint.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.1 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 8e-5 \ + --min_lr 0.0 \ + --weight_decay 5e-4 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_0_new1 diff --git a/scripts/.ipynb_checkpoints/train_coatnet_0_co_teaching-checkpoint.sh b/scripts/.ipynb_checkpoints/train_coatnet_0_co_teaching-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..cbfd4cf994e0b12d8af938164cd19320437df09d --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_coatnet_0_co_teaching-checkpoint.sh @@ -0,0 +1,31 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train_with_co_teaching \ + --seed 111 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --forget_rate 0.2 \ + --num_gradual_epochs 10 \ + --forget_rate_exponent 1.0 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_0_co_teaching diff --git a/scripts/.ipynb_checkpoints/train_coatnet_0_random-checkpoint.sh b/scripts/.ipynb_checkpoints/train_coatnet_0_random-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..807fe0648fbd51b2d78bc3d242744c8a59137d24 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_coatnet_0_random-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --random_weights \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_0_from_scratch diff --git a/scripts/.ipynb_checkpoints/train_coatnet_2-checkpoint.sh b/scripts/.ipynb_checkpoints/train_coatnet_2-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..aee0b87f43a38a4a275e92d22b58a9239ae53576 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_coatnet_2-checkpoint.sh @@ -0,0 +1,27 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_2 diff --git a/scripts/.ipynb_checkpoints/train_coatnet_2_random-checkpoint.sh b/scripts/.ipynb_checkpoints/train_coatnet_2_random-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..6fefa07ec9ac8e69e1fe158060bd0cd250c33d47 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_coatnet_2_random-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --random_weights \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_2_from_scratch diff --git a/scripts/.ipynb_checkpoints/train_convnext_base-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..d64a818a9f58e62682829f839450a2ba1d6ecafc --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_base-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_base.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_base diff --git a/scripts/.ipynb_checkpoints/train_convnext_femto-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_femto-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..486a9e34214e4f895544e56f69a094f28b435f1b --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_femto-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_femto.d1_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_femto diff --git a/scripts/.ipynb_checkpoints/train_convnext_large-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_large-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..b8f0e94edd54d55a5c611fb6ba5e63ebd6af3255 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_large-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_large.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 0.6e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_large6 diff --git a/scripts/.ipynb_checkpoints/train_convnext_nano-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_nano-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..2fd0b92e43697a39620ee45e4ac5e4c6f7e68e49 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_nano-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_nano.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_nano diff --git a/scripts/.ipynb_checkpoints/train_convnext_pico-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_pico-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..c6b64d8c5d107bce8b7242af4a7e42cae5f0f1b2 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_pico-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_pico.d1_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_pico diff --git a/scripts/.ipynb_checkpoints/train_convnext_small-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_small-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..b71d63a6c00d75a93c0a6ec1942c12be4c158bde --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_small-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_small.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_small diff --git a/scripts/.ipynb_checkpoints/train_convnext_tiny-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_tiny-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..edd3fdc9632fc1254f123b4169f3cbf7c9200f79 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_tiny-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_tiny.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_tiny diff --git a/scripts/.ipynb_checkpoints/train_convnext_v2_large-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_v2_large-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..f7013bd3c57fd3486015f5b062b504191478c5bb --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_v2_large-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnextv2_large.fcmae_ft_in22k_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 0.5e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct_start 0.2 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_v2_large-one_cycle_lr-lr_0.5e-4 diff --git a/scripts/.ipynb_checkpoints/train_convnext_xlarge-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_xlarge-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..f8fdaa2ea16ec4633169b845d4d5c3a50250e80d --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_xlarge-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_xlarge.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 0.5e-4 \ + --min_lr 0.0 \ + --weight_decay 5.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_xlarge diff --git a/scripts/.ipynb_checkpoints/train_convnext_xxlarge-checkpoint.sh b/scripts/.ipynb_checkpoints/train_convnext_xxlarge-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..8c58151f18edcc0b43e6b063b0024e7a19149034 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_convnext_xxlarge-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 16 \ + --eval_batch_size 16 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 0.25e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_xxlarge diff --git a/scripts/.ipynb_checkpoints/train_eva02_base-checkpoint.sh b/scripts/.ipynb_checkpoints/train_eva02_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..60ab45e74c207392c06184787dbb39cc47cd9a9e --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_eva02_base-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/eva02_base_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name eva02_base diff --git a/scripts/.ipynb_checkpoints/train_eva02_large-checkpoint.sh b/scripts/.ipynb_checkpoints/train_eva02_large-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..4c349f129d1116617336dc4e03e485293976c3a3 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_eva02_large-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/eva02_large_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct_start 0.2 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name eva02_large-one_cycle_lr diff --git a/scripts/.ipynb_checkpoints/train_eva02_small-checkpoint.sh b/scripts/.ipynb_checkpoints/train_eva02_small-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..97c12bc19bdb43889d16be0a9a78a9615f53ad9f --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_eva02_small-checkpoint.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/eva02_small_patch14_224.mim_in22k \ + --dataset_dir ./data/filtered_by_self_influence_scores/ich-17-filt-consid_500-max_per_cls_0.1 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name eva02_small-filt_max_per_cls_0.1 diff --git a/scripts/.ipynb_checkpoints/train_focalnet_base_srf-checkpoint.sh b/scripts/.ipynb_checkpoints/train_focalnet_base_srf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..d320197b13ce7e794c3266cbfcc8413a9fe87268 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_focalnet_base_srf-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/focalnet_base_srf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name focalnet_base_srf diff --git a/scripts/.ipynb_checkpoints/train_focalnet_small_lrf-checkpoint.sh b/scripts/.ipynb_checkpoints/train_focalnet_small_lrf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..82e613b8ce670073a2aec6c372db2cd212ed50fe --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_focalnet_small_lrf-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/focalnet_small_lrf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name focalnet_small_lrf diff --git a/scripts/.ipynb_checkpoints/train_focalnet_small_srf-checkpoint.sh b/scripts/.ipynb_checkpoints/train_focalnet_small_srf-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..02f1b2acf1a294abb72c1bf1b31c7279ec93b681 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_focalnet_small_srf-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/focalnet_small_srf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name focalnet_small_srf diff --git a/scripts/.ipynb_checkpoints/train_hgnetv2_b6_ssld_stage2-checkpoint.sh b/scripts/.ipynb_checkpoints/train_hgnetv2_b6_ssld_stage2-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..e11cc5111d77134373ded3acb68d32ec15fd5a5c --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_hgnetv2_b6_ssld_stage2-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/hgnetv2_b6.ssld_stage2_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct_start 0.25 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name hgnetv2_b6.ssld_stage2_ft_in1k-one_cycle_lr diff --git a/scripts/.ipynb_checkpoints/train_maxvit_base-checkpoint.sh b/scripts/.ipynb_checkpoints/train_maxvit_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..b81e2180f93f29791a352d480c6066ea02e34269 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_maxvit_base-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/maxvit_base_tf_224.in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name maxvit_base diff --git a/scripts/.ipynb_checkpoints/train_swin-checkpoint.sh b/scripts/.ipynb_checkpoints/train_swin-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..5bc2a05fce7e222329bcfdf937f64c4652e0472f --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_swin-checkpoint.sh @@ -0,0 +1,30 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_balanced_mixup \ + --cutmix_alpha 1.0 \ + --mixup_alpha 0.2 \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name swin_balanced_mixup_reversed_lambda diff --git a/scripts/.ipynb_checkpoints/train_tiny_vit_21m-checkpoint.sh b/scripts/.ipynb_checkpoints/train_tiny_vit_21m-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..f402d89411f60bda759e3d75f87bbbd1362a60fd --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_tiny_vit_21m-checkpoint.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/tiny_vit_21m_224.dist_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 200 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name tiny_vit_21m_dist_ich_16 diff --git a/scripts/.ipynb_checkpoints/train_vit_base-checkpoint.sh b/scripts/.ipynb_checkpoints/train_vit_base-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..364ac1dc401c9033f08e5f65a41e1b47af2a80da --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_vit_base-checkpoint.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/vit_base_patch16_224.augreg2_in21k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name vit_base diff --git a/scripts/.ipynb_checkpoints/train_vit_base_laion2b-checkpoint.sh b/scripts/.ipynb_checkpoints/train_vit_base_laion2b-checkpoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..48a26306aa6304d71353a3a11f52eaa6442e7a72 --- /dev/null +++ b/scripts/.ipynb_checkpoints/train_vit_base_laion2b-checkpoint.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/vit_base_patch16_clip_224.laion2b_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name vit-pretrained_laion2b diff --git a/scripts/filter_high_self_influence_score_samples.py b/scripts/filter_high_self_influence_score_samples.py new file mode 100644 index 0000000000000000000000000000000000000000..25e55afb2b6b1ecda24affe4f18da64466a5bf42 --- /dev/null +++ b/scripts/filter_high_self_influence_score_samples.py @@ -0,0 +1,193 @@ +#!/usr/bin/env python3 + +"""Filter samples with high self-influence scores and save the filtered dataset.""" + +import argparse +import os +import shutil +import sys + +import torchvision +from pydantic import BaseModel + +sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) +from soups.utils.logger import init_logger, logger + + +class SelfInfluenceScoreItem(BaseModel): + file_name: str + class_name: str + self_influence_score: float + + +class SelfInfluenceResults(BaseModel): + model_name: str + checkpoint_path_list: list[str] + self_influence_scores: list[SelfInfluenceScoreItem] + train_dataset_dir: str + num_classes: int + num_samples: int + + +def filter_high_self_influence_score_samples(args: argparse.Namespace) -> None: + # logger + init_logger(compact=True) + + # validate some files and dirs + if not os.path.isfile(args.self_influence_results) or not args.self_influence_results.endswith( + '.json' + ): + logger.error(f'Invalid self-influence results file: {args.self_influence_results}') + sys.exit(1) + if os.path.isdir(args.output_dataset_dir) and len(os.listdir(args.output_dataset_dir)) > 0: + logger.error( + f'Output dataset directory already exists and is not empty: {args.output_dataset_dir}' + ) + sys.exit(1) + + # loading and validating self-influence results file + with open(args.self_influence_results, 'r', encoding='utf-8') as f: + self_influence_results_str = f.read() + + try: + self_influence_results = SelfInfluenceResults.model_validate_json( + self_influence_results_str + ) + except ValueError as err: + logger.error(f'Invalid self-influence results file format: {args.self_influence_results}') + logger.error(err) + sys.exit(1) + + # loading dataset + train_dataset = torchvision.datasets.ImageFolder( + root=os.path.join(args.dataset_dir, 'train'), + ) + label_to_class = train_dataset.classes + class_to_label = train_dataset.class_to_idx + num_classes = len(label_to_class) + + if self_influence_results.num_classes != num_classes: + logger.error( + f'Number of classes in self-influence results ({self_influence_results.num_classes}) does not match the dataset ({num_classes})' + ) + sys.exit(1) + if self_influence_results.num_samples != len(train_dataset): + logger.error( + f'Number of samples in self-influence results ({self_influence_results.num_samples}) does not match the dataset ({len(train_dataset)})' + ) + sys.exit(1) + + # copy val, test, and train splits + os.makedirs(args.output_dataset_dir, exist_ok=True) + for split in ['val', 'test', 'train']: + src_split_dir = os.path.join(args.dataset_dir, split) + dst_split_dir = os.path.join(args.output_dataset_dir, split) + if not os.path.isdir(src_split_dir): + logger.error(f'Split directory does not exist: {src_split_dir}') + sys.exit(1) + + logger.info(f'Copying {split} split from {src_split_dir} to {dst_split_dir}') + shutil.copytree(src_split_dir, dst_split_dir) + + self_influence_scores = self_influence_results.self_influence_scores + if args.num_top_samples_to_remove is not None and args.num_top_samples_to_remove >= 1: + self_influence_scores = self_influence_scores[: args.num_top_samples_to_remove] + + num_removed_samples_per_class: dict[int, int] = dict.fromkeys(range(num_classes), 0) + + # determine max number of removed samples per class + max_num_removed_samples_per_class: list[int] | None = None + if ( + args.max_num_removed_samples_per_class is not None + and args.max_num_removed_samples_per_class >= 0 + ): + if args.max_num_removed_samples_per_class < 1.0: + max_num_removed_samples_per_class = [ + int(args.max_num_removed_samples_per_class * train_dataset.targets.count(c)) + for c in range(num_classes) + ] + else: + max_num_removed_samples_per_class = [ + int(args.max_num_removed_samples_per_class) for _ in range(num_classes) + ] + + logger.debug(' Max number of removed samples per class:') + for class_label, max_num_removed in enumerate(max_num_removed_samples_per_class): + logger.debug(f' - {label_to_class[class_label]}: {max_num_removed}') + + logger.info('Filtering top self-influence score samples...') + for item in self_influence_scores: + item_label = class_to_label[item.class_name] + if ( + max_num_removed_samples_per_class is not None + and num_removed_samples_per_class[item_label] + >= max_num_removed_samples_per_class[item_label] + ): + # if we have reached the max number of removed samples for this class, skip it + continue + num_removed_samples_per_class[item_label] += 1 + file_to_remove = os.path.join( + args.output_dataset_dir, 'train', item.class_name, item.file_name + ) + try: + os.remove(file_to_remove) + except FileNotFoundError: + logger.warning(f'File not found, skipping: {file_to_remove}') + except PermissionError as e: + logger.warning(f'Permission denied when removing {file_to_remove}: {e}') + + logger.info(' ** Summary ** ') + logger.info(f' Total samples in the original training set: {len(train_dataset)}') + num_removed_samples = sum(num_removed_samples_per_class.values()) + logger.info(f' Total samples removed: {num_removed_samples}') + logger.info(' Removed samples per class:') + for class_label, num_removed in num_removed_samples_per_class.items(): + logger.info(f' - {label_to_class[class_label]}: {num_removed}') + + +def _add_opts(parser: argparse.ArgumentParser) -> None: + parser.add_argument( + '--self_influence_results', + type=str, + help='Path to the self-influence results JSON file.', + required=True, + ) + parser.add_argument( + '--dataset_dir', + type=str, + help='Path to the dataset', + default='./data/ICH-17', + ) + parser.add_argument( + '--output_dataset_dir', + type=str, + help='Path to the directory to save the filtered dataset', + default='./data/ICH-17-filtered', + ) + parser.add_argument( + '--num_top_samples_to_remove', + type=int, + help='Number of samples (top self-influence scores samples) to consider removing. Leave `None` to consider all samples.', + default=None, + ) + parser.add_argument( + '--max_num_removed_samples_per_class', + type=float, + help='Max number of samples to remove per class (use float for percentage). Leave `None` to disable this option', + default=None, + ) + + +def main(): + parser = argparse.ArgumentParser( + description='Filter samples with high self-influence scores and save the filtered dataset.', + formatter_class=argparse.ArgumentDefaultsHelpFormatter, + ) + _add_opts(parser) + args = parser.parse_args() + + filter_high_self_influence_score_samples(args) + + +if __name__ == '__main__': + main() diff --git a/scripts/run_self_influence.sh b/scripts/run_self_influence.sh new file mode 100644 index 0000000000000000000000000000000000000000..7c47fc254f53ca0633e6fcd8df916ef41239ed6a --- /dev/null +++ b/scripts/run_self_influence.sh @@ -0,0 +1,13 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36/f1/model_epoch_16_f1_0.7191.pth' + +python -m soups.self_influence \ + --seed 42 \ + --checkpoint_path "${CHECKPOINTS_DIR}" \ + --device cpu \ + --output_file self_influence_results/_test.json \ + --model timm/caformer_s36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --eval_batch_size 16 \ + --num_workers 8 \ No newline at end of file diff --git a/scripts/soup_caformer_b36.sh b/scripts/soup_caformer_b36.sh new file mode 100644 index 0000000000000000000000000000000000000000..7403957e17b2dc59c4d1426cc0a8ee05aefacb62 --- /dev/null +++ b/scripts/soup_caformer_b36.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-14_09-18-13-caformer_b36-seed_7-one_cycle_lr/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/caformer_b36.sail_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_caformer_m36.sh b/scripts/soup_caformer_m36.sh new file mode 100644 index 0000000000000000000000000000000000000000..86ee8e6ab3336b11ce72394e8e120cca2ded55f6 --- /dev/null +++ b/scripts/soup_caformer_m36.sh @@ -0,0 +1,17 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/f1-top8' \ + '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/loss-top8' \ + '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/accuracy-top8' \ + --model timm/caformer_m36.sail_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_caformer_s36.sh b/scripts/soup_caformer_s36.sh new file mode 100644 index 0000000000000000000000000000000000000000..75761677bb29933e1cb381a4ded129475d1bacfe --- /dev/null +++ b/scripts/soup_caformer_s36.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36/f1' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/caformer_s36.sail_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_coatnet_0-merged_4_15.sh b/scripts/soup_coatnet_0-merged_4_15.sh new file mode 100644 index 0000000000000000000000000000000000000000..472ed79bf4608e9e1cddb734d312cc498ee14133 --- /dev/null +++ b/scripts/soup_coatnet_0-merged_4_15.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-43-44-coatnet_0_merged_4_15/loss' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_coatnet_0_co_teaching.sh b/scripts/soup_coatnet_0_co_teaching.sh new file mode 100644 index 0000000000000000000000000000000000000000..eae89e4247191c3517a66c2e4220edc233eeb1f3 --- /dev/null +++ b/scripts/soup_coatnet_0_co_teaching.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_15-36-45-coatnet_0_co_teaching_forget_0_2/model_1_loss' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_coatnet_0_random.sh b/scripts/soup_coatnet_0_random.sh new file mode 100644 index 0000000000000000000000000000000000000000..5d75ca7f1ce1771c0b4bf405d2da77669e3a623c --- /dev/null +++ b/scripts/soup_coatnet_0_random.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-38-52-coatnet_0_random/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_coatnet_2-merged_4_15.sh b/scripts/soup_coatnet_2-merged_4_15.sh new file mode 100644 index 0000000000000000000000000000000000000000..72ffc51f169eaf2db2c7e184bdfda744beb236cb --- /dev/null +++ b/scripts/soup_coatnet_2-merged_4_15.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-57-11-coatnet_2_merged_4_15/loss' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_coatnet_2_random.sh b/scripts/soup_coatnet_2_random.sh new file mode 100644 index 0000000000000000000000000000000000000000..6b7b9ded346c15b4a272ff651b10c1357e37064c --- /dev/null +++ b/scripts/soup_coatnet_2_random.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-41-55-coatnet_2_random/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_convnext_base.sh b/scripts/soup_convnext_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..8488a4ad833b0f40769cfbdc866771b7aa5a4e6c --- /dev/null +++ b/scripts/soup_convnext_base.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_16-27-06-convnext_base' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/convnext_base.fb_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_convnext_small.sh b/scripts/soup_convnext_small.sh new file mode 100644 index 0000000000000000000000000000000000000000..60e7f42450552125c937b230c7e687531dbf6c21 --- /dev/null +++ b/scripts/soup_convnext_small.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-54-53-convnext_small' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/convnext_small.in12k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_convnext_tiny.sh b/scripts/soup_convnext_tiny.sh new file mode 100644 index 0000000000000000000000000000000000000000..bc28685d4f5923b78fb60c50d62390113d31a3c9 --- /dev/null +++ b/scripts/soup_convnext_tiny.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-23-36-convnext_tiny' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/convnext_tiny.in12k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_eva02_base.sh b/scripts/soup_eva02_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..9cce5b24d0fc1202374abf0cf30ef2670df4126e --- /dev/null +++ b/scripts/soup_eva02_base.sh @@ -0,0 +1,13 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_00-11-46-eva02_base/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/eva02_base_patch14_224.mim_in22k \ + --uniform_soup \ + --greedy_soup \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_eva02_large.sh b/scripts/soup_eva02_large.sh new file mode 100644 index 0000000000000000000000000000000000000000..33ac47a6e7d1231d675fa21d986fa18b6b798562 --- /dev/null +++ b/scripts/soup_eva02_large.sh @@ -0,0 +1,16 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_01-21-34-eva02_large' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/eva02_large_patch14_224.mim_in22k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --eval_batch_size 4 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_eva02_small.sh b/scripts/soup_eva02_small.sh new file mode 100644 index 0000000000000000000000000000000000000000..10273d364c8fee7226da08927a790189d30bf63d --- /dev/null +++ b/scripts/soup_eva02_small.sh @@ -0,0 +1,16 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-20_14-45-41-eva02_small-reproduced' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/eva02_small_patch14_224.mim_in22k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --remove_duplicate_checkpoints \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_focalnet_base_srf.sh b/scripts/soup_focalnet_base_srf.sh new file mode 100644 index 0000000000000000000000000000000000000000..78d9db06593002e6aacf42bad73a1d38227b346a --- /dev/null +++ b/scripts/soup_focalnet_base_srf.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-12-59-focalnet_base_srf/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_base_srf.ms_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_focalnet_small_lrf.sh b/scripts/soup_focalnet_small_lrf.sh new file mode 100644 index 0000000000000000000000000000000000000000..4f9b341198726b646e2fb93772154208c3bee847 --- /dev/null +++ b/scripts/soup_focalnet_small_lrf.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-43-07-focalnet_small_lrf/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_small_lrf.ms_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_focalnet_small_srf.sh b/scripts/soup_focalnet_small_srf.sh new file mode 100644 index 0000000000000000000000000000000000000000..ceecaa9d4233fe52c40adc22a20a21be0b4d37ad --- /dev/null +++ b/scripts/soup_focalnet_small_srf.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_10-13-09-focalnet_small_srf/accuracy' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_small_srf.ms_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_hgnetv2_b6_ssld_stage2.sh b/scripts/soup_hgnetv2_b6_ssld_stage2.sh new file mode 100644 index 0000000000000000000000000000000000000000..3584ee65b3cea396946b53d4c15468443f66fe05 --- /dev/null +++ b/scripts/soup_hgnetv2_b6_ssld_stage2.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_11-57-53-hgnetv2_b6.ssld_stage2_ft_in1k-one_cycle_lr' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/hgnetv2_b6.ssld_stage2_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_maxvit_base.sh b/scripts/soup_maxvit_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..acafa078f50609a1b39d28659aa0f66be5fbf74b --- /dev/null +++ b/scripts/soup_maxvit_base.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_15-07-03-maxvit_base' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/maxvit_base_tf_224.in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_swin.sh b/scripts/soup_swin.sh new file mode 100644 index 0000000000000000000000000000000000000000..0d51f100f7695ba5eec126e96f8956e217c1d2d4 --- /dev/null +++ b/scripts/soup_swin.sh @@ -0,0 +1,14 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/accuracy' '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/f1' '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/loss' \ + --model timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_tiny_vit_21m.sh b/scripts/soup_tiny_vit_21m.sh new file mode 100644 index 0000000000000000000000000000000000000000..95c032ae4be61c0bacf5acb48d815771d68d648e --- /dev/null +++ b/scripts/soup_tiny_vit_21m.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_13-56-39-tiny_vit_21m_dist' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/tiny_vit_21m_224.dist_in22k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_vit_base.sh b/scripts/soup_vit_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..c65e839ebfe69b4707f132b26c61d6534ecffda8 --- /dev/null +++ b/scripts/soup_vit_base.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-27-15-vit_base' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/vit_base_patch16_224.augreg2_in21k_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soup_vit_base_laion2b.sh b/scripts/soup_vit_base_laion2b.sh new file mode 100644 index 0000000000000000000000000000000000000000..76f43acf7ac0e12b21adb611a4e04a0398b8d47f --- /dev/null +++ b/scripts/soup_vit_base_laion2b.sh @@ -0,0 +1,15 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-07-52-vit_base_laion2b' + +python -m soups.run_test_with_model_soups \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/vit_base_patch16_clip_224.laion2b_ft_in1k \ + --uniform_soup \ + --greedy_soup \ + --pruned_soup \ + --pruned_soup_num_iters 64 \ + --greedy_soup_comparison_metric f1 \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/soups.sh b/scripts/soups.sh new file mode 100644 index 0000000000000000000000000000000000000000..2b9d83306c6826d8606774fe8ef9072db7be2431 --- /dev/null +++ b/scripts/soups.sh @@ -0,0 +1,14 @@ +#!/usr/bin/env bash + +# This script is used for testing the model with model soups + +CHECKPOINTS_DIR='/path/to/saved/checkpoints' + +python -m soups.run_test_with_model_soups \ + --seed 111 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --uniform_soup \ + --greedy_soup \ + --dataset_dir data/ich-split-renamed \ + --output_dir "${CHECKPOINTS_DIR}/soups_results" diff --git a/scripts/split_dataset.py b/scripts/split_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..4dd78d2b3aff1374455adee5041ce0c7f93c36f6 --- /dev/null +++ b/scripts/split_dataset.py @@ -0,0 +1,126 @@ +#!/usr/bin/env python3 + +""" +This script is used for splitting an image dataset into training, validation, and test sets. + +Expected input format: +``` +dataset_name +├── class_1 +│ ├── image.jpg +│ ├── image.png +│ ├── ... +├── class_2 +│ ├── image.jpg +│ ├── ... +├── ... +``` + +Output format: +``` +dataset_name +├── train +│ ├── class_1 +│ │ ├── image.jpg +│ │ ├── ... +│ ├── class_2 +│ │ ├── image.jpg +│ │ ├── ... +├── val +│ ├── class_1 +│ │ ├── image.jpg +│ │ ├── ... +├── test +│ ├── class_1 +│ │ ├── image.jpg +│ │ ├── ... +``` +""" + +import argparse +import os +import random +import shutil + +import torch +import torchvision +from sklearn.model_selection import train_test_split + + +def make_dataset_splits(args: argparse.Namespace) -> None: + random.seed(args.seed) + torch.manual_seed(args.seed) + + dataset = torchvision.datasets.ImageFolder( + root=args.dataset_dir, + ) + print(f'Total image found: {len(dataset)}') + + # using train_test_split to split this dataset into train, test, and val splits + train_indices, test_indices = train_test_split( + range(len(dataset)), + test_size=0.1, + random_state=args.seed, + stratify=[target for _, target in dataset.samples], + ) + train_indices, val_indices = train_test_split( + train_indices, + test_size=0.1, + random_state=args.seed, + stratify=[dataset.samples[i][1] for i in train_indices], + ) + print( + f'Train size: {len(train_indices)}, ' + f'Test size: {len(test_indices)}, ' + f'Val size: {len(val_indices)}' + ) + + # create directories for splits + os.makedirs(args.output_dir, exist_ok=True) + split_names = ['train', 'test', 'val'] + + # save the splits + for split, indices in zip( + split_names, [train_indices, test_indices, val_indices], strict=True + ): + split_dir = os.path.join(args.output_dir, split) + os.makedirs(split_dir, exist_ok=True) + for class_name in dataset.classes: + os.makedirs(os.path.join(split_dir, class_name), exist_ok=True) + for idx in indices: + src_path, label = dataset.samples[idx] + class_name = dataset.classes[label] + dst_path = os.path.join(split_dir, class_name, os.path.basename(src_path)) + shutil.copyfile(src_path, dst_path) + + +def main() -> None: + parser = argparse.ArgumentParser( + description='Make dataset splits', + formatter_class=argparse.ArgumentDefaultsHelpFormatter, + ) + parser.add_argument( + '--seed', + type=int, + help='Random seed', + default=42, + ) + parser.add_argument( + '--dataset_dir', + type=str, + required=True, + help='Path to the dataset directory', + ) + parser.add_argument( + '--output_dir', + type=str, + required=True, + help='Path to the output directory', + ) + + args = parser.parse_args() + make_dataset_splits(args) + + +if __name__ == '__main__': + main() diff --git a/scripts/test.sh b/scripts/test.sh new file mode 100644 index 0000000000000000000000000000000000000000..5795649e9615922638cc3138c8cf0a7f13b3a199 --- /dev/null +++ b/scripts/test.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +# This script is used for testing the model with multiple checkpoints + +CHECKPOINTS_DIR='/path/to/saved/checkpoints' + +python -m soups.run_test_multiple_checkpoints \ + --seed 111 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" diff --git a/scripts/test_caformer_b36.sh b/scripts/test_caformer_b36.sh new file mode 100644 index 0000000000000000000000000000000000000000..41ea1b3699f8c1c8ead491b32d21f22e36047716 --- /dev/null +++ b/scripts/test_caformer_b36.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-14_09-18-13-caformer_b36-seed_7-one_cycle_lr' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/caformer_b36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_caformer_m36.sh b/scripts/test_caformer_m36.sh new file mode 100644 index 0000000000000000000000000000000000000000..e3493e8fd32161ac1542cd9c841f5d27da3ae5f8 --- /dev/null +++ b/scripts/test_caformer_m36.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_paths '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/f1-top8' \ + '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/accuracy-top8' \ + '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/loss-top8' \ + --model timm/caformer_m36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_caformer_s36.sh b/scripts/test_caformer_s36.sh new file mode 100644 index 0000000000000000000000000000000000000000..297965586487bc3cb80a1edfd764ce6a830dddd4 --- /dev/null +++ b/scripts/test_caformer_s36.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='//home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/caformer_s36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_coatnet_0-merged_4_15.sh b/scripts/test_coatnet_0-merged_4_15.sh new file mode 100644 index 0000000000000000000000000000000000000000..1b94a87e57e587b3c310ac2ffd7b888b10435b7a --- /dev/null +++ b/scripts/test_coatnet_0-merged_4_15.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-43-44-coatnet_0_merged_4_15' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_coatnet_0.sh b/scripts/test_coatnet_0.sh new file mode 100644 index 0000000000000000000000000000000000000000..665a9a2a42db324acd384ee72bcb19973d2e514f --- /dev/null +++ b/scripts/test_coatnet_0.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-30-41-coatnet_0_filtered_1000' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_coatnet_0_co_teaching.sh b/scripts/test_coatnet_0_co_teaching.sh new file mode 100644 index 0000000000000000000000000000000000000000..05e347a83554a700d42e0011cff99161ede714cf --- /dev/null +++ b/scripts/test_coatnet_0_co_teaching.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_15-36-45-coatnet_0_co_teaching_forget_0_2/model_1' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_coatnet_0_random.sh b/scripts/test_coatnet_0_random.sh new file mode 100644 index 0000000000000000000000000000000000000000..a3279653c51e33b3f3fb35808ae1ad0a66597977 --- /dev/null +++ b/scripts/test_coatnet_0_random.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-38-52-coatnet_0_random' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_coatnet_2-merged_4_15.sh b/scripts/test_coatnet_2-merged_4_15.sh new file mode 100644 index 0000000000000000000000000000000000000000..3d3793e7acfb9d89fbd6690ce9b8eb951dd1269a --- /dev/null +++ b/scripts/test_coatnet_2-merged_4_15.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-57-11-coatnet_2_merged_4_15' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_coatnet_2_random.sh b/scripts/test_coatnet_2_random.sh new file mode 100644 index 0000000000000000000000000000000000000000..4119e3ab228d1679f4e850098829179edaf8be5e --- /dev/null +++ b/scripts/test_coatnet_2_random.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-41-55-coatnet_2_random' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_base.sh b/scripts/test_convnext_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..62834b0e96f1453495b2d4dd0f43c67a1fa4fb95 --- /dev/null +++ b/scripts/test_convnext_base.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_16-27-06-convnext_base' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_base.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_femto.sh b/scripts/test_convnext_femto.sh new file mode 100644 index 0000000000000000000000000000000000000000..ddc4ce75f4ac9b96cb76720950257b9b115452ce --- /dev/null +++ b/scripts/test_convnext_femto.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-31-58-convnext_femto' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_femto.d1_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_large.sh b/scripts/test_convnext_large.sh new file mode 100644 index 0000000000000000000000000000000000000000..6301cbf830139d99efc553faadc72d14a2844f2a --- /dev/null +++ b/scripts/test_convnext_large.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-11_16-47-37-convnext_large6' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_large.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_nano.sh b/scripts/test_convnext_nano.sh new file mode 100644 index 0000000000000000000000000000000000000000..27efea615d0971d0e12e77806185226036d7cda3 --- /dev/null +++ b/scripts/test_convnext_nano.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-49-36-convnext_nano' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_nano.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_pico.sh b/scripts/test_convnext_pico.sh new file mode 100644 index 0000000000000000000000000000000000000000..74260cf02cb0e40ae8ca1ba04e6ae316988ea3ca --- /dev/null +++ b/scripts/test_convnext_pico.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-24-36-convnext_pico' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_pico.d1_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_small.sh b/scripts/test_convnext_small.sh new file mode 100644 index 0000000000000000000000000000000000000000..7721056e8990e56eab3a2af9417dbdda45601ef5 --- /dev/null +++ b/scripts/test_convnext_small.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-54-53-convnext_small' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_small.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_tiny.sh b/scripts/test_convnext_tiny.sh new file mode 100644 index 0000000000000000000000000000000000000000..3585f94c387a6f4de3613f5c5ec6672112ae2280 --- /dev/null +++ b/scripts/test_convnext_tiny.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-23-36-convnext_tiny' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_tiny.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_v2_large.sh b/scripts/test_convnext_v2_large.sh new file mode 100644 index 0000000000000000000000000000000000000000..f837bd31509e6d46d468d77133e3e7924f209fc9 --- /dev/null +++ b/scripts/test_convnext_v2_large.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_17-25-36-convnext_v2_large' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnextv2_large.fcmae_ft_in22k_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_xlarge.sh b/scripts/test_convnext_xlarge.sh new file mode 100644 index 0000000000000000000000000000000000000000..ff9bfe65bf524cffa86389190b915dfded0ef176 --- /dev/null +++ b/scripts/test_convnext_xlarge.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_11-58-22-convnext_xlarge' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_xlarge.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_convnext_xxlarge.sh b/scripts/test_convnext_xxlarge.sh new file mode 100644 index 0000000000000000000000000000000000000000..f1ba700829e39f95b090101e0b367f32b939013d --- /dev/null +++ b/scripts/test_convnext_xxlarge.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_13-53-47-convnext_xxlarge' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_eva02_base.sh b/scripts/test_eva02_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..816dccf33d07304ba710dc0c468b60563062b9b1 --- /dev/null +++ b/scripts/test_eva02_base.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_00-11-46-eva02_base' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/eva02_base_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_eva02_large.sh b/scripts/test_eva02_large.sh new file mode 100644 index 0000000000000000000000000000000000000000..0b3ceba428c2cd179f43dce2496cb105c6d87968 --- /dev/null +++ b/scripts/test_eva02_large.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-14_00-21-30-eva02_large-one_cycle_lr' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/eva02_large_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_eva02_small.sh b/scripts/test_eva02_small.sh new file mode 100644 index 0000000000000000000000000000000000000000..b722be2d2bf1650f3431f79ddde5a20df4b0c07e --- /dev/null +++ b/scripts/test_eva02_small.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-20_14-45-41-eva02_small-reproduced' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_paths "$CHECKPOINTS_DIR" \ + --model timm/eva02_small_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_focalnet_base_srf.sh b/scripts/test_focalnet_base_srf.sh new file mode 100644 index 0000000000000000000000000000000000000000..26868217c396fb33e3eb5c1555db78dbb1eb42d7 --- /dev/null +++ b/scripts/test_focalnet_base_srf.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/media/khmt/HDD1/TQKhang/mthien/soups/checkpoints/2025-09-10_14-12-59-focalnet_base_srf' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_base_srf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_focalnet_small_lrf.sh b/scripts/test_focalnet_small_lrf.sh new file mode 100644 index 0000000000000000000000000000000000000000..d5f2d4f3fdc6a714ddade4c16dcbde02fa03adcf --- /dev/null +++ b/scripts/test_focalnet_small_lrf.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/media/khmt/HDD1/TQKhang/mthien/soups/checkpoints/2025-09-10_14-43-07-focalnet_small_lrf' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_small_lrf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_focalnet_small_srf.sh b/scripts/test_focalnet_small_srf.sh new file mode 100644 index 0000000000000000000000000000000000000000..aeefdb7266720c51333fdecff723e98772c0c5f3 --- /dev/null +++ b/scripts/test_focalnet_small_srf.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_10-13-09-focalnet_small_srf' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/focalnet_small_srf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_hgnetv2_b6_ssld_stage2.sh b/scripts/test_hgnetv2_b6_ssld_stage2.sh new file mode 100644 index 0000000000000000000000000000000000000000..2b00524ec15012b20d4b21ded9cb86d822e7cc29 --- /dev/null +++ b/scripts/test_hgnetv2_b6_ssld_stage2.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_11-57-53-hgnetv2_b6.ssld_stage2_ft_in1k-one_cycle_lr' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/hgnetv2_b6.ssld_stage2_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_max_vit_base.sh b/scripts/test_max_vit_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..bb149323b65fe5abaebc3732706029d2f7d5e213 --- /dev/null +++ b/scripts/test_max_vit_base.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_15-07-03-maxvit_base' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/maxvit_base_tf_224.in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_swin.sh b/scripts/test_swin.sh new file mode 100644 index 0000000000000000000000000000000000000000..32f853091945ec5f2de1899cc3c5825ab536148c --- /dev/null +++ b/scripts/test_swin.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_23-24-08-swin_balanced_mixup_reversed_lambda' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_tiny_vit_21m.sh b/scripts/test_tiny_vit_21m.sh new file mode 100644 index 0000000000000000000000000000000000000000..7610c1ecf84adecc0a3ac2bdb5473e43432cf629 --- /dev/null +++ b/scripts/test_tiny_vit_21m.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_14-27-40-tiny_vit_21m_dist_ich_16' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoints_dir "$CHECKPOINTS_DIR" \ + --model timm/tiny_vit_21m_224.dist_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_vit_base.sh b/scripts/test_vit_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..3a419442c1d5c9ff0a0ffc9617f3d0134660db14 --- /dev/null +++ b/scripts/test_vit_base.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-27-15-vit_base' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/vit_base_patch16_224.augreg2_in21k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/test_vit_base_laion2b.sh b/scripts/test_vit_base_laion2b.sh new file mode 100644 index 0000000000000000000000000000000000000000..f6ae240b3dfaa1c0239c36cd59e58c00a056d78b --- /dev/null +++ b/scripts/test_vit_base_laion2b.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash + +CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-07-52-vit_base_laion2b' + +python -m soups.run_test_multiple_checkpoints \ + --seed 42 \ + --checkpoint_path "$CHECKPOINTS_DIR" \ + --model timm/vit_base_patch16_clip_224.laion2b_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --output_file "${CHECKPOINTS_DIR}/test_results.json" \ No newline at end of file diff --git a/scripts/train-coatnet_0-merged_4_15.sh b/scripts/train-coatnet_0-merged_4_15.sh new file mode 100644 index 0000000000000000000000000000000000000000..94a222e8fc9932e5a7e39d1a7576572f9ff96af8 --- /dev/null +++ b/scripts/train-coatnet_0-merged_4_15.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --checkpoints_dir ./checkpoints-sync + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name ich-split-renamed-merged-4-15-coatnet-0 diff --git a/scripts/train-coatnet_2-merged_4_15.sh b/scripts/train-coatnet_2-merged_4_15.sh new file mode 100644 index 0000000000000000000000000000000000000000..7391d3d8ef4113129bde482b229b190dcc85cc09 --- /dev/null +++ b/scripts/train-coatnet_2-merged_4_15.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --checkpoints_dir ./checkpoints-sync + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name ich-split-renamed-merged-4-15-coatnet-0 diff --git a/scripts/train.sh b/scripts/train.sh new file mode 100644 index 0000000000000000000000000000000000000000..6c0a36d6778a1fb7cb744f41e464405d4be72465 --- /dev/null +++ b/scripts/train.sh @@ -0,0 +1,27 @@ +#!/usr/bin/env bash + +# This script is used for training the model + +python -m soups.train \ + --seed 111 \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 4 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name example_expr diff --git a/scripts/train_caformer_b36.sh b/scripts/train_caformer_b36.sh new file mode 100644 index 0000000000000000000000000000000000000000..50ee6f0d318561636e71b6bfc0780d1c4936e763 --- /dev/null +++ b/scripts/train_caformer_b36.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 7 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/caformer_b36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct_start 0.2 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name caformer_b36-seed_7-one_cycle_lr diff --git a/scripts/train_caformer_m36.sh b/scripts/train_caformer_m36.sh new file mode 100644 index 0000000000000000000000000000000000000000..4342f090187d430cff9536233de3056f36b1b3bf --- /dev/null +++ b/scripts/train_caformer_m36.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/caformer_m36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct 0.3 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 16 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name caformer_m36-one_cycle_lr diff --git a/scripts/train_caformer_s36.sh b/scripts/train_caformer_s36.sh new file mode 100644 index 0000000000000000000000000000000000000000..ab3f280bd0ed64291b636d1bcf73aae16fadca5f --- /dev/null +++ b/scripts/train_caformer_s36.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/caformer_s36.sail_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name caformer_s36 diff --git a/scripts/train_coatnet_0.sh b/scripts/train_coatnet_0.sh new file mode 100644 index 0000000000000000000000000000000000000000..a49b86153d55b1d14157bb5f1b1a43ee5aeb5e57 --- /dev/null +++ b/scripts/train_coatnet_0.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.1 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 8e-5 \ + --min_lr 0.0 \ + --weight_decay 5e-4 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_0_new1 diff --git a/scripts/train_coatnet_0_co_teaching.sh b/scripts/train_coatnet_0_co_teaching.sh new file mode 100644 index 0000000000000000000000000000000000000000..cbfd4cf994e0b12d8af938164cd19320437df09d --- /dev/null +++ b/scripts/train_coatnet_0_co_teaching.sh @@ -0,0 +1,31 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train_with_co_teaching \ + --seed 111 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --forget_rate 0.2 \ + --num_gradual_epochs 10 \ + --forget_rate_exponent 1.0 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_0_co_teaching diff --git a/scripts/train_coatnet_0_random.sh b/scripts/train_coatnet_0_random.sh new file mode 100644 index 0000000000000000000000000000000000000000..807fe0648fbd51b2d78bc3d242744c8a59137d24 --- /dev/null +++ b/scripts/train_coatnet_0_random.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --model timm/coatnet_0_rw_224.sw_in1k \ + --dataset_dir data/ich-split-renamed \ + --random_weights \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_0_from_scratch diff --git a/scripts/train_coatnet_2.sh b/scripts/train_coatnet_2.sh new file mode 100644 index 0000000000000000000000000000000000000000..aee0b87f43a38a4a275e92d22b58a9239ae53576 --- /dev/null +++ b/scripts/train_coatnet_2.sh @@ -0,0 +1,27 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_2 diff --git a/scripts/train_coatnet_2_random.sh b/scripts/train_coatnet_2_random.sh new file mode 100644 index 0000000000000000000000000000000000000000..6fefa07ec9ac8e69e1fe158060bd0cd250c33d47 --- /dev/null +++ b/scripts/train_coatnet_2_random.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 111 \ + --model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --random_weights \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name coatnet_2_from_scratch diff --git a/scripts/train_convnext_base.sh b/scripts/train_convnext_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..d64a818a9f58e62682829f839450a2ba1d6ecafc --- /dev/null +++ b/scripts/train_convnext_base.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_base.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_base diff --git a/scripts/train_convnext_femto.sh b/scripts/train_convnext_femto.sh new file mode 100644 index 0000000000000000000000000000000000000000..486a9e34214e4f895544e56f69a094f28b435f1b --- /dev/null +++ b/scripts/train_convnext_femto.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_femto.d1_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_femto diff --git a/scripts/train_convnext_large.sh b/scripts/train_convnext_large.sh new file mode 100644 index 0000000000000000000000000000000000000000..b8f0e94edd54d55a5c611fb6ba5e63ebd6af3255 --- /dev/null +++ b/scripts/train_convnext_large.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_large.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 0.6e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_large6 diff --git a/scripts/train_convnext_nano.sh b/scripts/train_convnext_nano.sh new file mode 100644 index 0000000000000000000000000000000000000000..2fd0b92e43697a39620ee45e4ac5e4c6f7e68e49 --- /dev/null +++ b/scripts/train_convnext_nano.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_nano.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_nano diff --git a/scripts/train_convnext_pico.sh b/scripts/train_convnext_pico.sh new file mode 100644 index 0000000000000000000000000000000000000000..c6b64d8c5d107bce8b7242af4a7e42cae5f0f1b2 --- /dev/null +++ b/scripts/train_convnext_pico.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_pico.d1_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_pico diff --git a/scripts/train_convnext_small.sh b/scripts/train_convnext_small.sh new file mode 100644 index 0000000000000000000000000000000000000000..b71d63a6c00d75a93c0a6ec1942c12be4c158bde --- /dev/null +++ b/scripts/train_convnext_small.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_small.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_small diff --git a/scripts/train_convnext_tiny.sh b/scripts/train_convnext_tiny.sh new file mode 100644 index 0000000000000000000000000000000000000000..edd3fdc9632fc1254f123b4169f3cbf7c9200f79 --- /dev/null +++ b/scripts/train_convnext_tiny.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_tiny.in12k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_tiny diff --git a/scripts/train_convnext_v2_large.sh b/scripts/train_convnext_v2_large.sh new file mode 100644 index 0000000000000000000000000000000000000000..f7013bd3c57fd3486015f5b062b504191478c5bb --- /dev/null +++ b/scripts/train_convnext_v2_large.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnextv2_large.fcmae_ft_in22k_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 0.5e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct_start 0.2 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_v2_large-one_cycle_lr-lr_0.5e-4 diff --git a/scripts/train_convnext_xlarge.sh b/scripts/train_convnext_xlarge.sh new file mode 100644 index 0000000000000000000000000000000000000000..f8fdaa2ea16ec4633169b845d4d5c3a50250e80d --- /dev/null +++ b/scripts/train_convnext_xlarge.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_xlarge.fb_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 0.5e-4 \ + --min_lr 0.0 \ + --weight_decay 5.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_xlarge diff --git a/scripts/train_convnext_xxlarge.sh b/scripts/train_convnext_xxlarge.sh new file mode 100644 index 0000000000000000000000000000000000000000..8c58151f18edcc0b43e6b063b0024e7a19149034 --- /dev/null +++ b/scripts/train_convnext_xxlarge.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 16 \ + --eval_batch_size 16 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 0.25e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name convnext_xxlarge diff --git a/scripts/train_eva02_base.sh b/scripts/train_eva02_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..60ab45e74c207392c06184787dbb39cc47cd9a9e --- /dev/null +++ b/scripts/train_eva02_base.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/eva02_base_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name eva02_base diff --git a/scripts/train_eva02_large.sh b/scripts/train_eva02_large.sh new file mode 100644 index 0000000000000000000000000000000000000000..4c349f129d1116617336dc4e03e485293976c3a3 --- /dev/null +++ b/scripts/train_eva02_large.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/eva02_large_patch14_224.mim_in22k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 50 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 2.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct_start 0.2 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name eva02_large-one_cycle_lr diff --git a/scripts/train_eva02_small.sh b/scripts/train_eva02_small.sh new file mode 100644 index 0000000000000000000000000000000000000000..97c12bc19bdb43889d16be0a9a78a9615f53ad9f --- /dev/null +++ b/scripts/train_eva02_small.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/eva02_small_patch14_224.mim_in22k \ + --dataset_dir ./data/filtered_by_self_influence_scores/ich-17-filt-consid_500-max_per_cls_0.1 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name eva02_small-filt_max_per_cls_0.1 diff --git a/scripts/train_focalnet_base_srf.sh b/scripts/train_focalnet_base_srf.sh new file mode 100644 index 0000000000000000000000000000000000000000..d320197b13ce7e794c3266cbfcc8413a9fe87268 --- /dev/null +++ b/scripts/train_focalnet_base_srf.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/focalnet_base_srf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name focalnet_base_srf diff --git a/scripts/train_focalnet_small_lrf.sh b/scripts/train_focalnet_small_lrf.sh new file mode 100644 index 0000000000000000000000000000000000000000..82e613b8ce670073a2aec6c372db2cd212ed50fe --- /dev/null +++ b/scripts/train_focalnet_small_lrf.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/focalnet_small_lrf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name focalnet_small_lrf diff --git a/scripts/train_focalnet_small_srf.sh b/scripts/train_focalnet_small_srf.sh new file mode 100644 index 0000000000000000000000000000000000000000..f7449caa1be470ad8e316534480797bb4a2fc1fc --- /dev/null +++ b/scripts/train_focalnet_small_srf.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/focalnet_small_srf.ms_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name focalnet_small_srf diff --git a/scripts/train_hgnetv2_b6_ssld_stage2.sh b/scripts/train_hgnetv2_b6_ssld_stage2.sh new file mode 100644 index 0000000000000000000000000000000000000000..e11cc5111d77134373ded3acb68d32ec15fd5a5c --- /dev/null +++ b/scripts/train_hgnetv2_b6_ssld_stage2.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/hgnetv2_b6.ssld_stage2_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler one_cycle_lr \ + --one_cycle_lr_pct_start 0.25 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name hgnetv2_b6.ssld_stage2_ft_in1k-one_cycle_lr diff --git a/scripts/train_maxvit_base.sh b/scripts/train_maxvit_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..b81e2180f93f29791a352d480c6066ea02e34269 --- /dev/null +++ b/scripts/train_maxvit_base.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/maxvit_base_tf_224.in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 32 \ + --eval_batch_size 32 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 4 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name maxvit_base diff --git a/scripts/train_swin.sh b/scripts/train_swin.sh new file mode 100644 index 0000000000000000000000000000000000000000..5bc2a05fce7e222329bcfdf937f64c4652e0472f --- /dev/null +++ b/scripts/train_swin.sh @@ -0,0 +1,30 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_balanced_mixup \ + --cutmix_alpha 1.0 \ + --mixup_alpha 0.2 \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name swin_balanced_mixup_reversed_lambda diff --git a/scripts/train_tiny_vit_21m.sh b/scripts/train_tiny_vit_21m.sh new file mode 100644 index 0000000000000000000000000000000000000000..f402d89411f60bda759e3d75f87bbbd1362a60fd --- /dev/null +++ b/scripts/train_tiny_vit_21m.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/tiny_vit_21m_224.dist_in22k_ft_in1k \ + --dataset_dir data/ich-split-renamed-merged-4-15 \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 200 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler_T_0 3 \ + --scheduler_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name tiny_vit_21m_dist_ich_16 diff --git a/scripts/train_vit_base.sh b/scripts/train_vit_base.sh new file mode 100644 index 0000000000000000000000000000000000000000..364ac1dc401c9033f08e5f65a41e1b47af2a80da --- /dev/null +++ b/scripts/train_vit_base.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/vit_base_patch16_224.augreg2_in21k_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name vit_base diff --git a/scripts/train_vit_base_laion2b.sh b/scripts/train_vit_base_laion2b.sh new file mode 100644 index 0000000000000000000000000000000000000000..48a26306aa6304d71353a3a11f52eaa6442e7a72 --- /dev/null +++ b/scripts/train_vit_base_laion2b.sh @@ -0,0 +1,29 @@ +#!/usr/bin/env bash + +export WANDB_API_KEY='2f9704f4c631ee4a945155cac4b11c9fd0fdd6a7' + +python -m soups.train \ + --seed 42 \ + --checkpoints_dir ./checkpoints-sync \ + --model timm/vit_base_patch16_clip_224.laion2b_ft_in1k \ + --dataset_dir data/ich-split-renamed \ + --train_batch_size 64 \ + --eval_batch_size 64 \ + --num_epochs 100 \ + --label_smoothing 0.0 \ + --num_workers 8 \ + --mixed_precision fp16 \ + --gradient_accum_steps 2 \ + --lr 1e-4 \ + --min_lr 0.0 \ + --weight_decay 1.0e-3 \ + --scheduler cosine_annealing \ + --cosine_annealing_T_0 3 \ + --cosine_annealing_T_mult 1 \ + --best_checkpoint_metrics loss accuracy f1 \ + --save_best_k 8 \ + --use_mixup_cutmix \ + --max_grad_norm 1.0 \ + --wandb_logging \ + --wandb_project soups \ + --wandb_name vit-pretrained_laion2b