--- license: mit pretty_name: MixBench task_categories: - text-ranking task_ids: - document-retrieval language: - en multilinguality: monolingual annotations_creators: - machine-generated dataset_creator: Binxu Li et al. dataset_info: features: - name: id dtype: string - name: text dtype: string - name: image dtype: image configs: - config_name: MSCOCO data_files: - split: queries path: MSCOCO/queries.parquet - split: corpus path: MSCOCO/corpus.parquet - split: mixed_corpus path: MSCOCO/mixed_corpus.parquet - config_name: Google_WIT data_files: - split: queries path: Google_WIT/queries.parquet - split: corpus path: Google_WIT/corpus.parquet - split: mixed_corpus path: Google_WIT/mixed_corpus.parquet - config_name: VisualNews data_files: - split: queries path: VisualNews/queries.parquet - split: corpus path: VisualNews/corpus.parquet - split: mixed_corpus path: VisualNews/mixed_corpus.parquet - config_name: OVEN data_files: - split: queries path: OVEN/queries.parquet - split: corpus path: OVEN/corpus.parquet - split: mixed_corpus path: OVEN/mixed_corpus.parquet tags: - retrieval - image - text - multimodal - benchmark --- # MixBench: A Benchmark for Mixed Modality Retrieval **MixBench** is a benchmark for evaluating retrieval across text, images, and multimodal documents. It is designed to test how well retrieval models handle queries and documents that span different modalities, such as pure text, pure images, and combined image+text inputs. MixBench includes **four subsets**, each curated from a different data source: - **MSCOCO** - **Google_WIT** - **VisualNews** - **OVEN** Each subset contains: - `queries.jsonl`: each entry contains a `query_id`, `text`, and/or `image` - `mixed_corpus.jsonl`: each entry contains a `corpus_id`, a `text` or an `image` or a multimodal document (`text` and `image`) - `qrels.tsv`: a tab-separated list of relevant query-document pairs (`query_id`, `corpus_id`, `score=1`) - `corpus.jsonl`: the original corpus This benchmark supports diverse retrieval settings including unimodal-to-multimodal and cross-modal search. --- ## 🔄 Load Example You can load a specific subset of MixBench using the `name` argument: ```python from datasets import load_dataset # Load the MSCOCO subset ds_query = load_dataset("andy0207/mixbench", name="MSCOCO", split='query') ds_corpus = load_dataset("andy0207/mixbench", name="MSCOCO", split='mixed_corpus') ds_query = load_dataset("andy0207/mixbench", name="MSCOCO", split='qrel') # Load other subsets (corpus) ds_gwit = load_dataset("andy0207/mixbench", name="Google_WIT", split='mixed_corpus') ds_news = load_dataset("andy0207/mixbench", name="VisualNews",split='mixed_corpus') ds_oven = load_dataset("andy0207/mixbench", name="OVEN", split='mixed_corpus')