--- viewer: false tags: - ocr - document-processing - nanonets - markdown - uv-script - generated --- # Document OCR using Nanonets-OCR-s This dataset contains markdown-formatted OCR results from images in [/content/my_dataset](https://huggingface.co/datasets//content/my_dataset) using Nanonets-OCR-s. ## Processing Details - **Source Dataset**: [/content/my_dataset](https://huggingface.co/datasets//content/my_dataset) - **Model**: [nanonets/Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) - **Number of Samples**: 1 - **Processing Time**: 4.6 minutes - **Processing Date**: 2025-08-11 09:33 UTC ### Configuration - **Image Column**: `image` - **Output Column**: `markdown` - **Dataset Split**: `train` - **Batch Size**: 1 - **Max Model Length**: 8,192 tokens - **Max Output Tokens**: 4,096 - **GPU Memory Utilization**: 80.0% ## Model Information Nanonets-OCR-s is a state-of-the-art document OCR model that excels at: - 📐 **LaTeX equations** - Mathematical formulas preserved in LaTeX format - 📊 **Tables** - Extracted and formatted as HTML - 📝 **Document structure** - Headers, lists, and formatting maintained - 🖼️ **Images** - Captions and descriptions included in `` tags - ☑️ **Forms** - Checkboxes rendered as ☐/☑ - 🔖 **Watermarks** - Wrapped in `` tags - 📄 **Page numbers** - Wrapped in `` tags ## Dataset Structure The dataset contains all original columns plus: - `markdown`: The extracted text in markdown format with preserved structure - `inference_info`: JSON list tracking all OCR models applied to this dataset ## Usage ```python from datasets import load_dataset import json # Load the dataset dataset = load_dataset("{output_dataset_id}", split="train") # Access the markdown text for example in dataset: print(example["markdown"]) break # View all OCR models applied to this dataset inference_info = json.loads(dataset[0]["inference_info"]) for info in inference_info: print(f"Column: {info['column_name']} - Model: {info['model_id']}") ``` ## Reproduction This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) Nanonets OCR script: ```bash uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ /content/my_dataset \ \ --image-column image \ --batch-size 1 \ --max-model-len 8192 \ --max-tokens 4096 \ --gpu-memory-utilization 0.8 ``` ## Performance - **Processing Speed**: ~0.0 images/second - **GPU Configuration**: vLLM with 80% GPU memory utilization Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)