"""Victorian.""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ORIGINAL_FEATURE_NAMES = [ "text", "author" ] _BASE_FEATURE_NAMES = [ "text", "author" ] DESCRIPTION = "Victorian dataset from the Gungor thesis.\"." _HOMEPAGE = "https://scholarworks.iupui.edu/server/api/core/bitstreams/708a9870-915e-4d59-b54d-938af563c196/content" _URLS = ("https://scholarworks.iupui.edu/server/api/core/bitstreams/708a9870-915e-4d59-b54d-938af563c196/content") _CITATION = """ @phdthesis{gungor2018benchmarking, title={Benchmarking authorship attribution techniques using over a thousand books by fifty victorian era novelists}, author={Gungor, Abdulmecit}, year={2018}, school={Purdue University} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/victorian_authorship/resolve/main/train.csv", } features_types_per_config = { "authorship": { "text": datasets.Value("string"), "author": datasets.ClassLabel(num_classes=51) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class VictorianConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(VictorianConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Victorian(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "authorship" BUILDER_CONFIGS = [ VictorianConfig(name="authorship", description="authorship"), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): print(f"reading {filepath}") data = pandas.read_csv(filepath, encoding="latin-1") print(data.columns) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row