File size: 2,194 Bytes
dbd11a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b31ff4
dbd11a9
0b31ff4
dbd11a9
0b31ff4
dbd11a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b31ff4
 
 
dbd11a9
 
 
 
 
b3d0259
dbd11a9
 
 
 
 
b3d0259
dbd11a9
 
 
 
 
 
 
 
 
 
 
 
0b31ff4
dbd11a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
annotations_creators:
- derived
language:
- de
license: other
multilinguality: monolingual
task_categories:
- text-retrieval
task_ids:
- document-retrieval
tags:
- mteb
- text
- retrieval
- sample
configs:
- config_name: corpus
  data_files:
  - split: train
    path: corpus/train-*
- config_name: default
  data_files:
  - split: test
    path: data/test-*
- config_name: queries
  data_files:
  - split: train
    path: queries/train-*
dataset_info:
- config_name: corpus
  features:
  - name: _id
    dtype: string
  - name: title
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_examples: 10
- config_name: default
  features:
  - name: query-id
    dtype: string
  - name: corpus-id
    dtype: string
  - name: score
    dtype: int64
  splits:
  - name: test
    num_examples: 7
- config_name: queries
  features:
  - name: _id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_examples: 6
---

# GermanLegal1Retrieval-sample

A sample dataset for German educational regulation retrieval evaluation.

## Task category

Retrieval

## Domains

Education, Legal

## Dataset Structure

The dataset follows the standard MTEB retrieval format:

- `corpus/corpus-00000-of-00001.parquet`: 10 documents with fields `_id`, `title`, `text`
- `queries/queries-00000-of-00001.parquet`: 6 queries with fields `_id`, `text`  
- `data/test-00000-of-00001.parquet`: 7 relevance judgments with fields `query-id`, `corpus-id`, `score`

## Usage

You can evaluate an embedding model on this sample dataset using the following code:

```python
import mteb

# Load the dataset
task = mteb.get_task("GermanLegal1Retrieval")
evaluator = mteb.MTEB(tasks=[task])

# Run evaluation with your model
model = mteb.get_model("your-model-name")
results = evaluator.run(model) # requires hf_token to run as it is a closed dataset
```

## Sample Content

This sample dataset contains:
- 6 queries describing information needs
- 10 corresponding documents
- 7 relevance judgments connecting queries to documents

The data has been slightly modified for demonstration purposes while preserving the original structure and meaning.

## License

other