Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Portuguese
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
d7af1f3
·
verified ·
1 Parent(s): dfe8904

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +127 -0
README.md CHANGED
@@ -1,4 +1,20 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: text
@@ -21,4 +37,115 @@ configs:
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
 
 
 
24
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - por
6
+ license: cc-by-sa-4.0
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - mteb/told-br
10
+ task_categories:
11
+ - text-classification
12
+ task_ids:
13
+ - multi-label-classification
14
+ - sentiment-analysis
15
+ - sentiment-scoring
16
+ - sentiment-classification
17
+ - hate-speech-detection
18
  dataset_info:
19
  features:
20
  - name: text
 
37
  path: data/train-*
38
  - split: test
39
  path: data/test-*
40
+ tags:
41
+ - mteb
42
+ - text
43
  ---
44
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
45
+
46
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
47
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">BrazilianToxicTweetsClassification</h1>
48
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
49
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
50
+ </div>
51
+
52
+
53
+ ToLD-Br is the biggest dataset for toxic tweets in Brazilian Portuguese, crowdsourced by 42 annotators selected from
54
+ a pool of 129 volunteers. Annotators were selected aiming to create a plural group in terms of demographics (ethnicity,
55
+ sexual orientation, age, gender). Each tweet was labeled by three annotators in 6 possible categories: LGBTQ+phobia,
56
+ Xenophobia, Obscene, Insult, Misogyny and Racism.
57
+
58
+
59
+ | | |
60
+ |---------------|---------------------------------------------|
61
+ | Task category | t2c |
62
+ | Domains | Constructed, Written |
63
+ | Reference | https://paperswithcode.com/dataset/told-br |
64
+
65
+ Source datasets:
66
+ - [mteb/told-br](https://huggingface.co/datasets/mteb/told-br)
67
+
68
+
69
+ ## How to evaluate on this task
70
+
71
+ You can evaluate an embedding model on this dataset using the following code:
72
+
73
+ ```python
74
+ import mteb
75
+
76
+ task = mteb.get_task("BrazilianToxicTweetsClassification")
77
+ evaluator = mteb.MTEB([task])
78
+
79
+ model = mteb.get_model(YOUR_MODEL)
80
+ evaluator.run(model)
81
+ ```
82
+
83
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
84
+ To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
85
+
86
+ ## Citation
87
+
88
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
89
+
90
+ ```bibtex
91
+
92
+ @article{DBLP:journals/corr/abs-2010-04543,
93
+ author = {Joao Augusto Leite and
94
+ Diego F. Silva and
95
+ Kalina Bontcheva and
96
+ Carolina Scarton},
97
+ eprint = {2010.04543},
98
+ eprinttype = {arXiv},
99
+ journal = {CoRR},
100
+ timestamp = {Tue, 15 Dec 2020 16:10:16 +0100},
101
+ title = {Toxic Language Detection in Social Media for Brazilian Portuguese:
102
+ New Dataset and Multilingual Analysis},
103
+ url = {https://arxiv.org/abs/2010.04543},
104
+ volume = {abs/2010.04543},
105
+ year = {2020},
106
+ }
107
+
108
+
109
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
110
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
111
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
112
+ publisher = {arXiv},
113
+ journal={arXiv preprint arXiv:2502.13595},
114
+ year={2025},
115
+ url={https://arxiv.org/abs/2502.13595},
116
+ doi = {10.48550/arXiv.2502.13595},
117
+ }
118
+
119
+ @article{muennighoff2022mteb,
120
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
121
+ title = {MTEB: Massive Text Embedding Benchmark},
122
+ publisher = {arXiv},
123
+ journal={arXiv preprint arXiv:2210.07316},
124
+ year = {2022}
125
+ url = {https://arxiv.org/abs/2210.07316},
126
+ doi = {10.48550/ARXIV.2210.07316},
127
+ }
128
+ ```
129
+
130
+ # Dataset Statistics
131
+ <details>
132
+ <summary> Dataset Statistics</summary>
133
+
134
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
135
+
136
+ ```python
137
+ import mteb
138
+
139
+ task = mteb.get_task("BrazilianToxicTweetsClassification")
140
+
141
+ desc_stats = task.metadata.descriptive_stats
142
+ ```
143
+
144
+ ```json
145
+ {}
146
+ ```
147
+
148
+ </details>
149
+
150
+ ---
151
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*