Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 6,764 Bytes
9e4d7d5
4a1fe7b
 
 
 
 
 
 
 
 
 
 
 
9e4d7d5
4006601
 
 
 
 
 
 
 
 
 
 
 
 
 
2c06926
 
 
 
 
 
 
 
 
 
 
 
 
 
4006601
9e4d7d5
 
 
 
 
 
 
 
 
 
 
681b0d0
 
 
 
 
 
 
 
 
 
 
 
9e4d7d5
4006601
 
 
 
2c06926
 
 
 
9e4d7d5
 
 
 
681b0d0
 
 
 
4a1fe7b
 
 
9e4d7d5
4a1fe7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
annotations_creators:
- derived
language:
- code
- eng
license: mit
multilinguality: multilingual
source_datasets:
- tarsur909/mteb-loc-bench-reranking
task_categories:
- text-ranking
task_ids: []
dataset_info:
- config_name: corpus
  features:
  - name: title
    dtype: string
  - name: text
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 3568433274
    num_examples: 3630051
  download_size: 1130646855
  dataset_size: 3568433274
- config_name: qrels
  features:
  - name: query-id
    dtype: string
  - name: corpus-id
    dtype: string
  - name: score
    dtype: int64
  splits:
  - name: train
    num_bytes: 213007950
    num_examples: 3630051
  download_size: 25606242
  dataset_size: 213007950
- config_name: queries
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 1656784
    num_examples: 660
  download_size: 718545
  dataset_size: 1656784
- config_name: top_ranked
  features:
  - name: query-id
    dtype: string
  - name: corpus-ids
    sequence: string
  splits:
  - name: train
    num_bytes: 119224332
    num_examples: 660
  download_size: 18167896
  dataset_size: 119224332
configs:
- config_name: corpus
  data_files:
  - split: train
    path: corpus/train-*
- config_name: qrels
  data_files:
  - split: train
    path: qrels/train-*
- config_name: queries
  data_files:
  - split: train
    path: queries/train-*
- config_name: top_ranked
  data_files:
  - split: train
    path: top_ranked/train-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">LocBenchRR</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

Software Issue Localization.

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2t                              |
| Domains       | Programming, Written                               |
| Reference     | https://arxiv.org/abs/2503.09089 |

Source datasets:
- [tarsur909/mteb-loc-bench-reranking](https://huggingface.co/datasets/tarsur909/mteb-loc-bench-reranking)


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_task("LocBenchRR")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@misc{chen2025locagentgraphguidedllmagents,
  archiveprefix = {arXiv},
  author = {Zhaoling Chen and Xiangru Tang and Gangda Deng and Fang Wu and Jialong Wu and Zhiwei Jiang and Viktor Prasanna and Arman Cohan and Xingyao Wang},
  eprint = {2503.09089},
  primaryclass = {cs.SE},
  title = {LocAgent: Graph-Guided LLM Agents for Code Localization},
  url = {https://arxiv.org/abs/2503.09089},
  year = {2025},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("LocBenchRR")

desc_stats = task.metadata.descriptive_stats
```

```json
{}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*