--- annotations_creators: - derived language: - deu - fra - rus - spa license: unknown multilinguality: multilingual source_datasets: - mteb/mlsum - mteb/mlsum task_categories: - text-classification task_ids: - topic-classification dataset_info: - config_name: de features: - name: sentences dtype: string - name: labels dtype: int64 splits: - name: validation num_bytes: 7851569 num_examples: 2048 - name: test num_bytes: 8321519 num_examples: 2048 download_size: 10289335 dataset_size: 16173088 - config_name: es features: - name: sentences dtype: string - name: labels dtype: int64 splits: - name: validation num_bytes: 9449236 num_examples: 2048 - name: test num_bytes: 9905324 num_examples: 2048 download_size: 12116185 dataset_size: 19354560 - config_name: fr features: - name: sentences dtype: string - name: labels dtype: int64 splits: - name: validation num_bytes: 8233842 num_examples: 2048 - name: test num_bytes: 8169369 num_examples: 2048 download_size: 10111210 dataset_size: 16403211 - config_name: ru features: - name: sentences dtype: string - name: labels dtype: int64 splits: - name: validation num_bytes: 8827403 num_examples: 750 - name: test num_bytes: 9342909 num_examples: 756 download_size: 9299020 dataset_size: 18170312 configs: - config_name: de data_files: - split: validation path: de/validation-* - split: test path: de/test-* - config_name: es data_files: - split: validation path: es/validation-* - split: test path: es/test-* - config_name: fr data_files: - split: validation path: fr/validation-* - split: test path: fr/test-* - config_name: ru data_files: - split: validation path: ru/validation-* - split: test path: ru/test-* tags: - mteb - text ---

MLSUMClusteringS2S.v2

An MTEB dataset
Massive Text Embedding Benchmark
Clustering of newspaper article contents and titles from MLSUM dataset. Clustering of 10 sets on the newpaper article topics. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | News, Written | | Reference | https://huggingface.co/datasets/mteb/mlsum | Source datasets: - [mteb/mlsum](https://huggingface.co/datasets/mteb/mlsum) - [mteb/mlsum](https://huggingface.co/datasets/mteb/mlsum) ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("MLSUMClusteringS2S.v2") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @article{scialom2020mlsum, author = {Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo}, journal = {arXiv preprint arXiv:2004.14900}, title = {MLSUM: The Multilingual Summarization Corpus}, year = {2020}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("MLSUMClusteringS2S.v2") desc_stats = task.metadata.descriptive_stats ``` ```json {} ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*