Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
f2ea9d5
·
verified ·
1 Parent(s): c22ab2a

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +177 -55
README.md CHANGED
@@ -1,64 +1,186 @@
1
  ---
2
  language:
3
- - en
4
- multilinguality:
5
- - monolingual
6
  task_categories:
7
  - text-retrieval
8
- source_datasets:
9
- - arguana
10
- task_ids:
11
- - document-retrieval
12
  config_names:
13
  - corpus
14
  tags:
15
- - text-retrieval
 
16
  dataset_info:
17
- - config_name: default
18
- features:
19
- - name: query-id
20
- dtype: string
21
- - name: corpus-id
22
- dtype: string
23
- - name: score
24
- dtype: float64
25
- splits:
26
- - name: test
27
- num_bytes: 111736
28
- num_examples: 1406
29
- - config_name: corpus
30
- features:
31
- - name: _id
32
- dtype: string
33
- - name: title
34
- dtype: string
35
- - name: text
36
- dtype: string
37
- splits:
38
- - name: corpus
39
- num_bytes: 9388094
40
- num_examples: 8674
41
- - config_name: queries
42
- features:
43
- - name: _id
44
- dtype: string
45
- - name: text
46
- dtype: string
47
- splits:
48
- - name: queries
49
- num_bytes: 1743698
50
- num_examples: 1406
51
  configs:
52
- - config_name: default
53
- data_files:
54
- - split: test
55
- path: qrels/test.jsonl
56
- - config_name: corpus
57
- data_files:
58
- - split: corpus
59
- path: corpus.jsonl
60
- - config_name: queries
61
- data_files:
62
- - split: queries
63
- path: queries.jsonl
64
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
+ - eng
4
+ license: cc-by-sa-4.0
5
+ multilinguality: monolingual
6
  task_categories:
7
  - text-retrieval
 
 
 
 
8
  config_names:
9
  - corpus
10
  tags:
11
+ - mteb
12
+ - text
13
  dataset_info:
14
+ - config_name: default
15
+ features:
16
+ - name: query-id
17
+ dtype: string
18
+ - name: corpus-id
19
+ dtype: string
20
+ - name: score
21
+ dtype: float64
22
+ splits:
23
+ - name: test
24
+ num_bytes: 111736
25
+ num_examples: 1406
26
+ - config_name: corpus
27
+ features:
28
+ - name: _id
29
+ dtype: string
30
+ - name: title
31
+ dtype: string
32
+ - name: text
33
+ dtype: string
34
+ splits:
35
+ - name: corpus
36
+ num_bytes: 9388094
37
+ num_examples: 8674
38
+ - config_name: queries
39
+ features:
40
+ - name: _id
41
+ dtype: string
42
+ - name: text
43
+ dtype: string
44
+ splits:
45
+ - name: queries
46
+ num_bytes: 1743698
47
+ num_examples: 1406
48
  configs:
49
+ - config_name: default
50
+ data_files:
51
+ - split: test
52
+ path: qrels/test.jsonl
53
+ - config_name: corpus
54
+ data_files:
55
+ - split: corpus
56
+ path: corpus.jsonl
57
+ - config_name: queries
58
+ data_files:
59
+ - split: queries
60
+ path: queries.jsonl
61
+ ---
62
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
63
+
64
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
65
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">ArguAna</h1>
66
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
67
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
68
+ </div>
69
+
70
+ NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval
71
+
72
+ | | |
73
+ |---------------|---------------------------------------------|
74
+ | Task category | t2t |
75
+ | Domains | Medical, Written |
76
+ | Reference | http://argumentation.bplaced.net/arguana/data |
77
+
78
+
79
+ ## How to evaluate on this task
80
+
81
+ You can evaluate an embedding model on this dataset using the following code:
82
+
83
+ ```python
84
+ import mteb
85
+
86
+ task = mteb.get_tasks(["ArguAna"])
87
+ evaluator = mteb.MTEB(task)
88
+
89
+ model = mteb.get_model(YOUR_MODEL)
90
+ evaluator.run(model)
91
+ ```
92
+
93
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
94
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
95
+
96
+ ## Citation
97
+
98
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
99
+
100
+ ```bibtex
101
+
102
+ @inproceedings{boteva2016,
103
+ author = {Boteva, Vera and Gholipour, Demian and Sokolov, Artem and Riezler, Stefan},
104
+ city = {Padova},
105
+ country = {Italy},
106
+ journal = {Proceedings of the 38th European Conference on Information Retrieval},
107
+ journal-abbrev = {ECIR},
108
+ title = {A Full-Text Learning to Rank Dataset for Medical Information Retrieval},
109
+ url = {http://www.cl.uni-heidelberg.de/~riezler/publications/papers/ECIR2016.pdf},
110
+ year = {2016},
111
+ }
112
+
113
+
114
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
115
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
116
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
117
+ publisher = {arXiv},
118
+ journal={arXiv preprint arXiv:2502.13595},
119
+ year={2025},
120
+ url={https://arxiv.org/abs/2502.13595},
121
+ doi = {10.48550/arXiv.2502.13595},
122
+ }
123
+
124
+ @article{muennighoff2022mteb,
125
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
126
+ title = {MTEB: Massive Text Embedding Benchmark},
127
+ publisher = {arXiv},
128
+ journal={arXiv preprint arXiv:2210.07316},
129
+ year = {2022}
130
+ url = {https://arxiv.org/abs/2210.07316},
131
+ doi = {10.48550/ARXIV.2210.07316},
132
+ }
133
+ ```
134
+
135
+ # Dataset Statistics
136
+ <details>
137
+ <summary> Dataset Statistics</summary>
138
+
139
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
140
+
141
+ ```python
142
+ import mteb
143
+
144
+ task = mteb.get_task("ArguAna")
145
+
146
+ desc_stats = task.metadata.descriptive_stats
147
+ ```
148
+
149
+ ```json
150
+ {
151
+ "test": {
152
+ "num_samples": 10080,
153
+ "number_of_characters": 10613204,
154
+ "num_documents": 8674,
155
+ "min_document_length": 3,
156
+ "average_document_length": 1030.2327645838136,
157
+ "max_document_length": 6674,
158
+ "unique_documents": 8674,
159
+ "num_queries": 1406,
160
+ "min_query_length": 251,
161
+ "average_query_length": 1192.7204836415362,
162
+ "max_query_length": 5500,
163
+ "unique_queries": 1406,
164
+ "none_queries": 0,
165
+ "num_relevant_docs": 1406,
166
+ "min_relevant_docs_per_query": 1,
167
+ "average_relevant_docs_per_query": 1.0,
168
+ "max_relevant_docs_per_query": 1,
169
+ "unique_relevant_docs": 1406,
170
+ "num_instructions": null,
171
+ "min_instruction_length": null,
172
+ "average_instruction_length": null,
173
+ "max_instruction_length": null,
174
+ "unique_instructions": null,
175
+ "num_top_ranked": null,
176
+ "min_top_ranked_per_query": null,
177
+ "average_top_ranked_per_query": null,
178
+ "max_top_ranked_per_query": null
179
+ }
180
+ }
181
+ ```
182
+
183
+ </details>
184
+
185
+ ---
186
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*