Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
92e2ae7
·
verified ·
1 Parent(s): 829147f

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +208 -2
README.md CHANGED
@@ -1,6 +1,212 @@
1
  ---
 
 
2
  language:
3
- - en
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- ** Attention: There appears an overlap in train / test. I trained a model on the train set and achieved 100% acc on test set. With the original emotion dataset this is not the case (92.4% acc)**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
  language:
5
+ - eng
6
+ license: unknown
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-classification
10
+ task_ids:
11
+ - Sentiment/Hate speech
12
+ tags:
13
+ - mteb
14
+ - text
15
  ---
16
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
17
 
18
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
19
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">EmotionClassification</h1>
20
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
21
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
22
+ </div>
23
+
24
+ Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.
25
+
26
+ | | |
27
+ |---------------|---------------------------------------------|
28
+ | Task category | t2c |
29
+ | Domains | Social, Written |
30
+ | Reference | https://www.aclweb.org/anthology/D18-1404 |
31
+
32
+
33
+ ## How to evaluate on this task
34
+
35
+ You can evaluate an embedding model on this dataset using the following code:
36
+
37
+ ```python
38
+ import mteb
39
+
40
+ task = mteb.get_tasks(["EmotionClassification"])
41
+ evaluator = mteb.MTEB(task)
42
+
43
+ model = mteb.get_model(YOUR_MODEL)
44
+ evaluator.run(model)
45
+ ```
46
+
47
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
48
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
49
+
50
+ ## Citation
51
+
52
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
53
+
54
+ ```bibtex
55
+
56
+ @inproceedings{saravia-etal-2018-carer,
57
+ abstract = {Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.},
58
+ address = {Brussels, Belgium},
59
+ author = {Saravia, Elvis and
60
+ Liu, Hsien-Chi Toby and
61
+ Huang, Yen-Hao and
62
+ Wu, Junlin and
63
+ Chen, Yi-Shin},
64
+ booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing},
65
+ doi = {10.18653/v1/D18-1404},
66
+ editor = {Riloff, Ellen and
67
+ Chiang, David and
68
+ Hockenmaier, Julia and
69
+ Tsujii, Jun{'}ichi},
70
+ month = oct # {-} # nov,
71
+ pages = {3687--3697},
72
+ publisher = {Association for Computational Linguistics},
73
+ title = {{CARER}: Contextualized Affect Representations for Emotion Recognition},
74
+ url = {https://aclanthology.org/D18-1404},
75
+ year = {2018},
76
+ }
77
+
78
+
79
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
80
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
81
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
82
+ publisher = {arXiv},
83
+ journal={arXiv preprint arXiv:2502.13595},
84
+ year={2025},
85
+ url={https://arxiv.org/abs/2502.13595},
86
+ doi = {10.48550/arXiv.2502.13595},
87
+ }
88
+
89
+ @article{muennighoff2022mteb,
90
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
91
+ title = {MTEB: Massive Text Embedding Benchmark},
92
+ publisher = {arXiv},
93
+ journal={arXiv preprint arXiv:2210.07316},
94
+ year = {2022}
95
+ url = {https://arxiv.org/abs/2210.07316},
96
+ doi = {10.48550/ARXIV.2210.07316},
97
+ }
98
+ ```
99
+
100
+ # Dataset Statistics
101
+ <details>
102
+ <summary> Dataset Statistics</summary>
103
+
104
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
105
+
106
+ ```python
107
+ import mteb
108
+
109
+ task = mteb.get_task("EmotionClassification")
110
+
111
+ desc_stats = task.metadata.descriptive_stats
112
+ ```
113
+
114
+ ```json
115
+ {
116
+ "validation": {
117
+ "num_samples": 2000,
118
+ "number_of_characters": 190695,
119
+ "number_texts_intersect_with_train": 5,
120
+ "min_text_length": 11,
121
+ "average_text_length": 95.3475,
122
+ "max_text_length": 295,
123
+ "unique_text": 1998,
124
+ "unique_labels": 6,
125
+ "labels": {
126
+ "0": {
127
+ "count": 550
128
+ },
129
+ "2": {
130
+ "count": 178
131
+ },
132
+ "3": {
133
+ "count": 275
134
+ },
135
+ "1": {
136
+ "count": 704
137
+ },
138
+ "4": {
139
+ "count": 212
140
+ },
141
+ "5": {
142
+ "count": 81
143
+ }
144
+ }
145
+ },
146
+ "test": {
147
+ "num_samples": 2000,
148
+ "number_of_characters": 193173,
149
+ "number_texts_intersect_with_train": 11,
150
+ "min_text_length": 14,
151
+ "average_text_length": 96.5865,
152
+ "max_text_length": 296,
153
+ "unique_text": 2000,
154
+ "unique_labels": 6,
155
+ "labels": {
156
+ "0": {
157
+ "count": 581
158
+ },
159
+ "1": {
160
+ "count": 695
161
+ },
162
+ "4": {
163
+ "count": 224
164
+ },
165
+ "3": {
166
+ "count": 275
167
+ },
168
+ "2": {
169
+ "count": 159
170
+ },
171
+ "5": {
172
+ "count": 66
173
+ }
174
+ }
175
+ },
176
+ "train": {
177
+ "num_samples": 16000,
178
+ "number_of_characters": 1549533,
179
+ "number_texts_intersect_with_train": null,
180
+ "min_text_length": 7,
181
+ "average_text_length": 96.8458125,
182
+ "max_text_length": 300,
183
+ "unique_text": 15969,
184
+ "unique_labels": 6,
185
+ "labels": {
186
+ "0": {
187
+ "count": 4666
188
+ },
189
+ "3": {
190
+ "count": 2159
191
+ },
192
+ "2": {
193
+ "count": 1304
194
+ },
195
+ "5": {
196
+ "count": 572
197
+ },
198
+ "4": {
199
+ "count": 1937
200
+ },
201
+ "1": {
202
+ "count": 5362
203
+ }
204
+ }
205
+ }
206
+ }
207
+ ```
208
+
209
+ </details>
210
+
211
+ ---
212
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*