|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CoNaLa dataset.""" |
|
|
|
import json |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{zhou2022doccoder, |
|
title={DocCoder: Generating Code by Retrieving and Reading Docs}, |
|
author={Zhou, Shuyan and Alon, Uri and Xu, Frank F and JIang, Zhengbao and Neubig, Graham}, |
|
journal={arXiv preprint arXiv:2207.05987}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """This is the re-split of CoNaLa dataset. For each code snippet in the dev and test set, at least one function is held out from the training set. This split aims at testing a code generation model's capacity in generating unseen functions. |
|
We further make sure that examples from the same StackOverflow post (same question_id before -) are in the same split.""" |
|
|
|
_HOMEPAGE = "https://github.com/shuyanzhou/docprompting" |
|
_URLs = { |
|
"docs": "tldr-docs.jsonl", |
|
"data": {"train": "tldr-train.jsonl", "validation": "tldr-dev.jsonl", "test": "tldr-test.jsonl" }, |
|
} |
|
|
|
class DocPromptingConala(datasets.GeneratorBasedBuilder): |
|
"""TLDR natural language to bash generation dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="data", |
|
version=datasets.Version("1.1.0"), |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig(name="docs", version=datasets.Version("1.1.0"), description=_DESCRIPTION), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "data" |
|
|
|
|
|
def _info(self): |
|
if self.config.name == "data": |
|
features=datasets.Features({"question_id": datasets.Value("string"), |
|
"nl": datasets.Value("string"), |
|
"cmd": datasets.Value("string"), |
|
"oracle_man": datasets.Sequence(feature=datasets.Value("string")), |
|
"cmd_name": datasets.Value("string"), |
|
"tldr_cmd_name": datasets.Value("string"), |
|
"manual_exist": datasets.Value("bool"), |
|
"matching_info": datasets.Sequence( |
|
{ |
|
'token': datasets.Value("string"), |
|
'oracle_man': datasets.Sequence(feature=datasets.Value("string")) |
|
} |
|
) |
|
}) |
|
else: |
|
features=datasets.Features({"doc_id": datasets.Value("string"), |
|
"doc_content": datasets.Value("string"), |
|
}) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
homepage=_HOMEPAGE) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
config_urls = _URLs[self.config.name] |
|
data_dir = dl_manager.download_and_extract(config_urls) |
|
if self.config.name == "data": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir["train"], "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir["test"], "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_dir["validation"], "split": "validation"}, |
|
), |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir, "split": "train"}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
key = 0 |
|
for line in open(filepath, encoding="utf-8"): |
|
line = json.loads(line) |
|
yield key, line |
|
key += 1 |