nickmuchi commited on
Commit
ca947c5
1 Parent(s): 522c1f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -5
README.md CHANGED
@@ -26,17 +26,17 @@ How to use
26
  Download data
27
  Load to use with LangChain
28
 
29
- '''
30
  pip install -qqq langchain sentence_transformers faiss-cpu huggingface_hub
31
  import os
32
  from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
33
 
34
  from langchain.vectorstores.faiss import FAISS
35
  from huggingface_hub import snapshot_download
36
- '''
37
 
38
  # download the vectorstore for the book you want
39
- '''
40
  cache_dir="cfa_level_1_cache"
41
  vectorstore = snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
42
  repo_type="dataset",
@@ -44,21 +44,26 @@ vectorstore = snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
44
  allow_patterns=f"books/{book}/*", # to download only the one book
45
  cache_dir=cache_dir,
46
  )
47
- '''
48
  # get path to the `vectorstore` folder that you just downloaded
49
  # we'll look inside the `cache_dir` for the folder we want
 
50
  target_dir = f"cfa/cfa_level_1"
 
51
 
52
  # Walk through the directory tree recursively
 
53
  for root, dirs, files in os.walk(cache_dir):
54
  # Check if the target directory is in the list of directories
55
  if target_dir in dirs:
56
  # Get the full path of the target directory
57
  target_path = os.path.join(root, target_dir)
 
58
 
59
  # load embeddings
60
  # this is what was used to create embeddings for the text
61
 
 
62
  embed_instruction = "Represent the financial paragraph for document retrieval: "
63
  query_instruction = "Represent the question for retrieving supporting documents: "
64
 
@@ -80,4 +85,6 @@ search = docsearch.similarity_search(question, k=4)
80
  for item in search:
81
  print(item.page_content)
82
  print(f"From page: {item.metadata['page']}")
83
- print("---")
 
 
 
26
  Download data
27
  Load to use with LangChain
28
 
29
+ ```
30
  pip install -qqq langchain sentence_transformers faiss-cpu huggingface_hub
31
  import os
32
  from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
33
 
34
  from langchain.vectorstores.faiss import FAISS
35
  from huggingface_hub import snapshot_download
36
+ ```
37
 
38
  # download the vectorstore for the book you want
39
+ ```
40
  cache_dir="cfa_level_1_cache"
41
  vectorstore = snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
42
  repo_type="dataset",
 
44
  allow_patterns=f"books/{book}/*", # to download only the one book
45
  cache_dir=cache_dir,
46
  )
47
+ ```
48
  # get path to the `vectorstore` folder that you just downloaded
49
  # we'll look inside the `cache_dir` for the folder we want
50
+ ```
51
  target_dir = f"cfa/cfa_level_1"
52
+ ```
53
 
54
  # Walk through the directory tree recursively
55
+ ```
56
  for root, dirs, files in os.walk(cache_dir):
57
  # Check if the target directory is in the list of directories
58
  if target_dir in dirs:
59
  # Get the full path of the target directory
60
  target_path = os.path.join(root, target_dir)
61
+ ```
62
 
63
  # load embeddings
64
  # this is what was used to create embeddings for the text
65
 
66
+ ```
67
  embed_instruction = "Represent the financial paragraph for document retrieval: "
68
  query_instruction = "Represent the question for retrieving supporting documents: "
69
 
 
85
  for item in search:
86
  print(item.page_content)
87
  print(f"From page: {item.metadata['page']}")
88
+ print("---")
89
+
90
+ ```