File size: 4,102 Bytes
7cbc74a b9c7f46 edeebdd b9c7f46 edeebdd 591a0c2 0e795b0 c54d16f 0e795b0 00577b5 77f7858 00577b5 0e795b0 bdda320 0e795b0 bdda320 0e795b0 00577b5 0e795b0 5997bf7 0e795b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
dataset_info:
features:
- name: license
dtype: int64
- name: file_name
dtype: string
- name: coco_url
dtype: string
- name: height
dtype: int64
- name: width
dtype: int64
- name: date_captured
dtype: string
- name: flickr_url
dtype: string
- name: image_id
dtype: int64
- name: ids
sequence: int64
- name: captions
sequence: string
splits:
- name: train
num_bytes: 60768398.02132102
num_examples: 112268
- name: validation
num_bytes: 2684731
num_examples: 5000
download_size: 28718001
dataset_size: 63453129.02132102
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
task_categories:
- text-to-image
- image-to-image
language:
- en
tags:
- coco
- image-captioning
- colorization
pretty_name: COCO2017-Colorization
size_categories:
- 100K<n<1M
---
# COCO 2017 Dataset for Image Colorization
## Overview
This dataset is derived from the COCO (Common Objects in Context) 2017 dataset, which is a large-scale object detection, segmentation, and captioning dataset. The COCO 2017 dataset has been adapted here specifically for the task of image colorization.
## Dataset Description
- **Original Dataset:** [COCO 2017](https://cocodataset.org/#download).
- **Task:** Image Colorization
- **License:** [COCO dataset license](https://cocodataset.org/#termsofuse)
## Format
```python
DatasetDict({
train: Dataset({
features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id', 'ids', 'captions'],
num_rows: 112268
})
validation: Dataset({
features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id', 'ids', 'captions'],
num_rows: 5000
})
})
```
## Usage
### Download image data and unzip
```bash
cd PATH_TO_IMAGE_FOLDER
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
unzip train2017.zip
unzip val2017.zip
```
### Branches
- **main:** Provides the original captions sentences.
- **caption-free:** Provides random prompts selected from the following list:
```python
sentences = [
"Add colors to this image",
"Give realistic colors to this image",
"Add realistic colors to this image",
"Colorize this grayscale image",
"Colorize this image",
"Restore the original colors of this image",
"Make this image colorful",
"Colorize this image as if it was taken with a color camera",
"Create the original colors of this image"
]
```
### Loading the Dataset
You can load this dataset using the Hugging Face `datasets` library:
```python
from datasets import load_dataset
```
#### Main Branch
```python
# Load the train split of the colorization dataset
train_dataset = load_dataset("nickpai/coco2017-colorization", split="train")
# Load the validation split of the colorization dataset
val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation")
```
#### Caption-Free Branch
```python
# Load the train split of the colorization dataset from the caption-free branch
train_dataset = load_dataset("nickpai/coco2017-colorization", split="train", revision="caption-free")
# Load the validation split of the colorization dataset from the caption-free branch
val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation", revision="caption-free")
```
## Filtering Criteria
### 1. Grayscale Images
- Images in grayscale mode are identified and removed.
- Grayscale images lack color information are not be suitable for image colorization.
### 2. Identical Color Histograms
- Images with identical histograms across color channels (red, green, and blue) are removed.
- Such images may lack sufficient color variation, affecting model training and performance.
### 3. Low Color Variance
- Images with low color variance, determined by a specified threshold, are removed.
- Low color variance can indicate poor image quality or uniform color distribution.
|