Update README for loading dataset from caption-free branch
Browse filesUpdated the README file to include instructions on loading the COCO 2017 Colorization Dataset from the caption-free branch of the repository. Added usage examples for loading both the train and validation splits from the caption-free branch. The README now provides clear guidance on how to choose between the main branch for original captions and the caption-free branch for prompts-free captions when loading the dataset.
README.md
CHANGED
|
@@ -91,10 +91,30 @@ unzip train2017.zip
|
|
| 91 |
unzip val2017.zip
|
| 92 |
```
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
### Loading the Dataset
|
| 95 |
|
| 96 |
You can load this dataset using the Hugging Face `datasets` library:
|
| 97 |
|
|
|
|
| 98 |
```python
|
| 99 |
from datasets import load_dataset
|
| 100 |
|
|
@@ -105,6 +125,19 @@ train_dataset = load_dataset("nickpai/coco2017-colorization", split="train")
|
|
| 105 |
val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation")
|
| 106 |
```
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
## Filtering Criteria
|
| 109 |
|
| 110 |
### 1. Grayscale Images
|
|
|
|
| 91 |
unzip val2017.zip
|
| 92 |
```
|
| 93 |
|
| 94 |
+
### Branches
|
| 95 |
+
|
| 96 |
+
- **main:** Provides the original captions sentences.
|
| 97 |
+
- **caption-free:** Provides captions with random prompts selected from the following list:
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
sentences = [
|
| 101 |
+
"Add colors to this image",
|
| 102 |
+
"Give realistic colors to this image",
|
| 103 |
+
"Add realistic colors to this image",
|
| 104 |
+
"Colorize this grayscale image",
|
| 105 |
+
"Colorize this image",
|
| 106 |
+
"Restore the original colors of this image",
|
| 107 |
+
"Make this image colorful",
|
| 108 |
+
"Colorize this image as if it was taken with a color camera",
|
| 109 |
+
"Create the original colors of this image"
|
| 110 |
+
]
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
### Loading the Dataset
|
| 114 |
|
| 115 |
You can load this dataset using the Hugging Face `datasets` library:
|
| 116 |
|
| 117 |
+
#### Main Branch
|
| 118 |
```python
|
| 119 |
from datasets import load_dataset
|
| 120 |
|
|
|
|
| 125 |
val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation")
|
| 126 |
```
|
| 127 |
|
| 128 |
+
#### Caption-Free Branch
|
| 129 |
+
```python
|
| 130 |
+
from datasets import load_dataset
|
| 131 |
+
|
| 132 |
+
# Load the train split of the colorization dataset from the caption-free branch
|
| 133 |
+
train_dataset = load_dataset("nickpai/coco2017-colorization", split="train", revision="caption-free")
|
| 134 |
+
|
| 135 |
+
# Load the validation split of the colorization dataset from the caption-free branch
|
| 136 |
+
val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation", revision="caption-free")
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
## Filtering Criteria
|
| 142 |
|
| 143 |
### 1. Grayscale Images
|