nikoloside commited on
Commit
25d7df0
·
0 Parent(s):

initial commit

Browse files
Files changed (6) hide show
  1. .gitattributes +4 -0
  2. LICENSE +26 -0
  3. README.md +95 -0
  4. data_card.md +155 -0
  5. dataset_info.json +68 -0
  6. teaser.jpg +3 -0
.gitattributes ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ *.gif filter=lfs diff=lfs merge=lfs -text
2
+ *.nii filter=lfs diff=lfs merge=lfs -text
3
+ *.txt filter=lfs diff=lfs merge=lfs -text
4
+ *.jpg filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Public Domain Dedication and License (PDDL)
2
+
3
+ This is free and unencumbered software released into the public domain.
4
+
5
+ Anyone is free to copy, modify, publish, use, compile, sell, or
6
+ distribute this software, either in source code form or as a compiled
7
+ binary, for any purpose, commercial or non-commercial, and by any
8
+ means.
9
+
10
+ In jurisdictions that recognize copyright laws, the author or authors
11
+ of this software dedicate any and all copyright interest in the
12
+ software to the public domain. We make this dedication for the benefit
13
+ of the public at large and to the detriment of our heirs and
14
+ successors. We intend this dedication to be an overt act of
15
+ relinquishment in perpetuity of all present and future rights to this
16
+ software under copyright law.
17
+
18
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21
+ IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22
+ OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23
+ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24
+ OTHER DEALINGS IN THE SOFTWARE.
25
+
26
+ For more information, please refer to <http://unlicense.org/>
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Break4Models Dataset
2
+
3
+ ![Teaser](./teaser.jpg)
4
+
5
+ Break4Models is a small-scale 4-shape dataset for deepfracture paper. It contains simulation data of various 3D objects undergoing impact and breaking fracture pattern, designed for training and evaluating neural networks that can predict object fracture patterns for specific one target shape. It was created by [FractureRB](https://github.com/david-hahn/FractureRB).
6
+
7
+ 📖 **For more details, please visit:**
8
+ - [GitHub Repository](https://github.com/nikoloside/TEBP)
9
+ - [Project Page](https://nikoloside.graphics/deepfracture/)
10
+
11
+ ## Overview
12
+
13
+ This dataset contains simulation data of 4-shape 3D objects undergoing impact and breaking fracture pattern. Each target shape includes multiple simulation runs with different impact conditions, providing a small-scale dataset for learning relationship between impact collision condition and physics-based fracture patterns.
14
+
15
+ ## Dataset Structure
16
+
17
+ ```
18
+ break4models/
19
+ ├── _out_base/ # Base object simulations
20
+ ├── _out_pot/ # Pot object simulations
21
+ ├── _out_squirrel/ # Squirrel object simulations
22
+ ├── _out_bunny/ # Bunny object simulations
23
+ └── README.md # This file
24
+ ```
25
+
26
+ Each object category directory contains:
27
+ - `meta.json` - Metadata with simulation statistics
28
+ - `obj/` - 3D mesh files (.obj format) for each simulation step
29
+ - `info/` - Collision information files
30
+ - `impact/` - Detailed impact data in JSON format
31
+ - `initial_cond/` - Initial conditions for simulations
32
+ - `nii/` - NIfTI format data (if applicable)
33
+ - `gif/` - Animation files showing breaking process
34
+
35
+ ## Data Format
36
+
37
+ ### Meta Information (`meta.json`)
38
+ ```json
39
+ {
40
+ "target_shape": "base",
41
+ "max_gssdf_val": 0.128913,
42
+ "avg_max_gssdf_val": 0.127481,
43
+ "min_gssdf_val": -1.045852,
44
+ "avg_min_gssdf_val": -1.045852,
45
+ "start_time": "2024-03-30T08:58:40",
46
+ "stop_time": "2024-03-30T10:40:07",
47
+ "total_valid": 277
48
+ }
49
+ ```
50
+
51
+ ### Impact Data (`impact/*.txt`)
52
+ JSON format containing collision information:
53
+ - `collElems`: Collision element IDs
54
+ - `collPoints`: Collision point coordinates [x, y, z]
55
+ - `collDirections`: Collision direction vectors
56
+ - `collVels`: Collision velocities
57
+ - `collImpulse`: Collision impulse values
58
+ - `collForce`: Collision force magnitudes
59
+
60
+ ### Info Files (`info/*.txt`)
61
+ Simple format: `directory/,frame_number`
62
+
63
+ ## Usage
64
+
65
+ This dataset is designed for:
66
+ - Training neural networks for physics-based fracture pattern
67
+ - Evaluating fracture prediction models
68
+ - Research in computational physics and computer graphics
69
+ - Development of real-time simulation systems
70
+
71
+ ## Citation
72
+
73
+ If you use this dataset in your research, please cite:
74
+
75
+ ```bibtex
76
+ @article{huang2025deepfracture,
77
+ author = {Huang, Yuhang and Kanai, Takashi},
78
+ title = {DeepFracture: A Generative Approach for Predicting Brittle Fractures with Neural Discrete Representation Learning},
79
+ journal = {Computer Graphics Forum},
80
+ pages = {e70002},
81
+ year = {2025},
82
+ keywords = {animation, brittle fracture, neural networks, physically based animation},
83
+ doi = {https://doi.org/10.1111/cgf.70002},
84
+ url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.70002},
85
+ eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.70002}
86
+ }
87
+ ```
88
+
89
+ ## License
90
+
91
+ This dataset is licensed under the **Public Domain Dedication and License (PDDL)**.
92
+
93
+ ## Contact
94
+
95
+ For questions or issues, please open an issue on the Hugging Face dataset page.
data_card.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Data Card for Break4Models
2
+
3
+ ## Dataset Description
4
+
5
+ - **Dataset Name**: Break4Models
6
+ - **Dataset Type**: Physics simulation data
7
+ - **Language**: English
8
+ - **License**: PDDL (Public Domain Dedication and License)
9
+ - **Created by**: [FractureRB](https://github.com/david-hahn/FractureRB)
10
+
11
+ ### Dataset Sources
12
+
13
+ - **Repository**: [GitHub Repository](https://github.com/nikoloside/TEBP)
14
+ - **Paper**: [DeepFracture: A Generative Approach for Predicting Brittle Fractures with Neural Discrete Representation Learning](https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.70002)
15
+ - **Project Page**: [Project Page](https://nikoloside.graphics/deepfracture/)
16
+
17
+ ## Dataset Overview
18
+
19
+ Break4Models is a small-scale 4-shape dataset for deepfracture paper. It contains simulation data of various 3D objects undergoing impact and breaking fracture pattern, designed for training and evaluating neural networks that can predict object fracture patterns for specific one target shape.
20
+
21
+ ### Dataset Structure
22
+
23
+ The dataset is organized by object categories:
24
+ - `_out_base/` - Base object simulations (277 samples)
25
+ - `_out_pot/` - Pot object simulations (433 samples)
26
+ - `_out_squirrel/` - Squirrel object simulations (529 samples)
27
+ - `_out_bunny/` - Bunny object simulations (500 samples)
28
+
29
+ Each category contains:
30
+ - `meta.json` - Metadata with simulation statistics
31
+ - `obj/` - 3D mesh files (.obj format) for each simulation step
32
+ - `info/` - Collision information files
33
+ - `impact/` - Detailed impact data in JSON format
34
+ - `initial_cond/` - Initial conditions for simulations
35
+ - `nii/` - NIfTI format data (if applicable)
36
+ - `gif/` - Animation files showing breaking process
37
+
38
+ ## Data Collection
39
+
40
+ ### Source Data
41
+
42
+ The dataset was created by [FractureRB](https://github.com/david-hahn/FractureRB).
43
+
44
+ ### Annotations
45
+
46
+ - **Impact Data**: JSON format containing collision information
47
+ - `collElems`: Collision element IDs
48
+ - `collPoints`: Collision point coordinates [x, y, z]
49
+ - `collDirections`: Collision direction vectors
50
+ - `collVels`: Collision velocities
51
+ - `collImpulse`: Collision impulse values
52
+ - `collForce`: Collision force magnitudes
53
+
54
+ - **Info Files**: Simple format `directory/,simulation-index-number`
55
+
56
+ ### Personal and Sensitive Information
57
+
58
+ This dataset contains no personal or sensitive information as it consists entirely of synthetic physics simulation data.
59
+
60
+ ## Dataset Statistics
61
+
62
+ ### Dataset Size
63
+
64
+ - **Total Objects**: 4 target shapes (base, pot, squirrel, bunny)
65
+ - **Total Simulations**: Varies by category
66
+ - Base: 277 simulations
67
+ - Pot: 433 simulations
68
+ - Squirrel: 529 simulations
69
+ - Bunny: 500 simulations
70
+
71
+ ### Data Fields
72
+
73
+ - `target_shape`: The target object shape name
74
+ - `max_gssdf_val`: Maximum GS-SDF (Geometrically-Segmented Signed Distance Field) value
75
+ - `avg_max_gssdf_val`: Average maximum GS-SDF value
76
+ - `min_gssdf_val`: Minimum GS-SDF value
77
+ - `avg_min_gssdf_val`: Average minimum GS-SDF value
78
+ - `start_time`: Simulation start time
79
+ - `stop_time`: Simulation end time
80
+ - `total_valid`: Total number of valid simulation times
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use
85
+
86
+ This dataset is designed for:
87
+ - Training neural networks for physics-based collision-conditional brittle fracture
88
+ - Evaluating fracture prediction models for deepfracture paper
89
+ - Research in computational physics and computer graphics
90
+ - Demo for real-time brittle fracture simulation systems
91
+
92
+ ### Out-of-Scope Use
93
+
94
+ - Medical applications
95
+ - Safety-critical systems
96
+ - High-precision engineering simulations without additional validation
97
+
98
+ ## Bias, Risks, and Limitations
99
+
100
+ ### Bias
101
+
102
+ The dataset is generated from synthetic simulations and may not perfectly represent real-world physics. The objects and materials are idealized and may not capture all real-world complexities.
103
+
104
+ ### Risks
105
+
106
+ - Models trained on this data may not generalize to real-world scenarios
107
+ - Performance may degrade with objects significantly different from training data
108
+ - No guarantees for physical accuracy in safety-critical applications
109
+
110
+ ### Limitations
111
+
112
+ - Limited to the specific object categories in the dataset
113
+ - Synthetic data may not capture all real-world physics phenomena
114
+ - Requires significant computational resources for processing
115
+
116
+ ## Training and Evaluation
117
+
118
+ ### Training Data
119
+
120
+ The dataset is split into training and test sets:
121
+ - **Training set**: 200 samples
122
+ - **Test set**: 50 samples
123
+
124
+ This split is used for model development and evaluation.
125
+
126
+ ### Evaluation Data
127
+
128
+ Evaluation metrics include:
129
+ - Geometric accuracy
130
+ - Physics consistency
131
+ - Computational efficiency
132
+
133
+ ## Citation
134
+
135
+ ```bibtex
136
+ @article{huang2025deepfracture,
137
+ author = {Huang, Yuhang and Kanai, Takashi},
138
+ title = {DeepFracture: A Generative Approach for Predicting Brittle Fractures with Neural Discrete Representation Learning},
139
+ journal = {Computer Graphics Forum},
140
+ pages = {e70002},
141
+ year = {2025},
142
+ keywords = {animation, brittle fracture, neural networks, physically based animation},
143
+ doi = {https://doi.org/10.1111/cgf.70002},
144
+ url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.70002},
145
+ eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.70002}
146
+ }
147
+ ```
148
+
149
+ ## Data Card Authors
150
+
151
+ Huang Niko(nikoloside), Fang Chaowei(fangsunjian)
152
+
153
+ ## Data Card Contact
154
+
155
+ https://github.com/nikoloside/TEBP
dataset_info.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "break4models",
3
+ "description": "A 4-shape small-scale dataset for physics-based 3D object breaking simulation and reconstruction",
4
+ "homepage": "https://huggingface.co/datasets/nikoloside/break4models",
5
+ "license": "PDDL",
6
+ "features": {
7
+ "target_shape": {
8
+ "dtype": "string",
9
+ "description": "The target object shape name"
10
+ },
11
+ "max_gssdf_val": {
12
+ "dtype": "float32",
13
+ "description": "Maximum GS-SDF (Geometrically-Segmented Signed Distance Field) value"
14
+ },
15
+ "avg_max_gssdf_val": {
16
+ "dtype": "float32",
17
+ "description": "Average maximum GS-SDF value"
18
+ },
19
+ "min_gssdf_val": {
20
+ "dtype": "float32",
21
+ "description": "Minimum GS-SDF value"
22
+ },
23
+ "avg_min_gssdf_val": {
24
+ "dtype": "float32",
25
+ "description": "Average minimum GSSDF value"
26
+ },
27
+ "start_time": {
28
+ "dtype": "string",
29
+ "description": "Simulation start timestamp"
30
+ },
31
+ "stop_time": {
32
+ "dtype": "string",
33
+ "description": "Simulation end timestamp"
34
+ },
35
+ "total_valid": {
36
+ "dtype": "int32",
37
+ "description": "Total number of valid simulation Times"
38
+ }
39
+ },
40
+ "config_name": "default",
41
+ "version": {
42
+ "version_str": "1.0.0",
43
+ "description": "Initial release",
44
+ "major": 1,
45
+ "minor": 0,
46
+ "patch": 0
47
+ },
48
+ "splits": {
49
+ "train": {
50
+ "name": "train",
51
+ "num_bytes": 0,
52
+ "num_examples": 200,
53
+ "shard_lengths": []
54
+ },
55
+ "test": {
56
+ "name": "test",
57
+ "num_bytes": 0,
58
+ "num_examples": 50,
59
+ "shard_lengths": []
60
+ }
61
+ },
62
+ "download_checksums": {},
63
+ "download_size": 0,
64
+ "post_processed": null,
65
+ "supervised_keys": null,
66
+ "task_templates": [],
67
+ "builder_name": "json"
68
+ }
teaser.jpg ADDED

Git LFS Details

  • SHA256: aaa08f712a5aaa1c10a68804b0a1e0b9e5c13efd8155e507a664d2faf062d74f
  • Pointer size: 132 Bytes
  • Size of remote file: 2.52 MB