File size: 4,532 Bytes
373124f
 
 
 
 
 
 
 
 
 
 
 
 
31ec806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373124f
 
03c6d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
language:
- en
license: mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- image-classification
- object-detection
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: id
    dtype: string
  - name: image
    dtype: string
  - name: target
    dtype: string
  - name: instrument
    dtype: string
  - name: filter
    dtype: string
  - name: date_obs
    dtype: string
  - name: exptime
    dtype: 'null'
  - name: ra
    dtype: 'null'
  - name: dec
    dtype: 'null'
  - name: program
    dtype: string
  - name: image_path
    dtype: string
  - name: width
    dtype: int64
  - name: height
    dtype: int64
  - name: total_pixels
    dtype: int64
  - name: mean_intensity
    dtype: float64
  - name: std_intensity
    dtype: float64
  - name: min_intensity
    dtype: float64
  - name: max_intensity
    dtype: float64
  - name: median_intensity
    dtype: float64
  - name: skewness
    dtype: float64
  - name: kurtosis
    dtype: float64
  - name: dynamic_range
    dtype: float64
  - name: noise_level
    dtype: float64
  - name: noise_std
    dtype: float64
  - name: signal_to_noise
    dtype: float64
  - name: saturated_pixels
    dtype: int64
  - name: saturation_percentage
    dtype: float64
  - name: is_saturated
    dtype: bool
  - name: cosmic_rays
    list:
      list: int64
  - name: hot_pixels
    list:
      list: int64
  - name: bad_pixels
    list: 'null'
  - name: artifact_count
    dtype: int64
  - name: quality_score
    dtype: float64
  splits:
  - name: train
    num_bytes: 18984918
    num_examples: 2709
  download_size: 3821834
  dataset_size: 18984918
---

# JWST Quality Analysis Dataset

## Overview

This dataset contains comprehensive quality analysis for 2,709 JWST (James Webb Space Telescope) NIRCam images from the MAST archive. Each image has been automatically analyzed for quality metrics, artifact detection, and noise characteristics.

## Dataset Information

- **Size**: 2,709 images
- **Format**: JSONL (JSON Lines)
- **Source**: JWST NIRCam observations from MAST
- **Targets**: M16, NGC 3132, NGC 3324, SMACS 0723, Stephan's Quintet

## Quality Metrics

Each image includes:

### Basic Statistics
- `mean_intensity`, `std_intensity`, `min_intensity`, `max_intensity`
- `median_intensity`, `skewness`, `kurtosis`, `dynamic_range`

### Noise Analysis
- `noise_level`, `noise_std`, `signal_to_noise`

### Saturation Analysis
- `saturated_pixels`, `saturation_percentage`, `is_saturated`

### Artifact Detection
- `cosmic_rays`: List of cosmic ray locations [x, y, area]
- `hot_pixels`: List of hot pixel locations [x, y, area]
- `bad_pixels`: List of bad pixel locations [x, y, area]
- `artifact_count`: Total number of artifacts

### Quality Assessment
- `quality_score`: Overall quality score (1-10 scale)

## Use Cases

### For Researchers
- **Quality Screening**: Filter images by quality score for analysis
- **Artifact Cataloging**: Identify and locate artifacts for cleaning
- **Statistical Analysis**: Study image quality across different targets/filters
- **Quality Benchmarking**: Compare quality across different observations

### For Machine Learning
- **Training Data**: Train quality assessment models
- **Feature Engineering**: Use quality metrics as features
- **Validation**: Quality scores for model evaluation

## Methodology

The quality analysis was performed using:
- **OpenCV** for image processing and artifact detection
- **NumPy/SciPy** for statistical analysis
- **Parallel processing** for efficient analysis of large datasets

Quality scores are calculated based on:
- Signal-to-noise ratios
- Saturation levels
- Artifact counts
- Dynamic range

## Dataset Statistics

- **Mean Quality Score**: 8.39/10
- **Quality Score Range**: 6.0 - 10.0
- **Images with Artifacts**: All images contain some artifacts (typical for astronomical data)
- **Saturated Images**: 0 (no significant saturation detected)

## Citation

If you use this dataset in your research, please cite:

```bibtex
@dataset{jwst_quality_analysis_2024,
  title={JWST Quality Analysis Dataset},
  author={Your Name},
  year={2024},
  url={https://huggingface.co/datasets/norbertm/jwst-quality-analysis-dataset}
}
```

## License

This dataset is provided for research purposes. Please refer to the original JWST data usage policies from MAST.

## Contact

For questions or feedback about this dataset, please open an issue on the Hugging Face repository.