| 
							 | 
						import json | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						import random | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						from huggingface_hub import HfApi, RepoCard | 
					
					
						
						| 
							 | 
						from transformers import HfArgumentParser | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						random.seed(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def generate_unique_multiplication_data(a_max, b_max, n_train, n_test): | 
					
					
						
						| 
							 | 
						    """Generate train and test datasets for each multiplication range ensuring no overlap.""" | 
					
					
						
						| 
							 | 
						    datasets = {} | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    for a in range(1, a_max + 1): | 
					
					
						
						| 
							 | 
						        for b in range(1, b_max + 1): | 
					
					
						
						| 
							 | 
						            all_pairs = [(x, y) for x in range(1, a + 1) for y in range(1, b + 1)] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            test_data = set(random.sample(list(all_pairs), min(n_test, len(all_pairs))))   | 
					
					
						
						| 
							 | 
						            train_data = set(random.sample(list(set(all_pairs) - test_data), min(n_train, len(set(all_pairs) - test_data)))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            datasets[f"{a}x{b}"] = {"train": list(train_data), "test": list(test_data)} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return datasets | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def save_to_jsonl(data, file_path): | 
					
					
						
						| 
							 | 
						    """Save dataset to JSONL format.""" | 
					
					
						
						| 
							 | 
						    with open(file_path, "w") as f: | 
					
					
						
						| 
							 | 
						        for a, b in data: | 
					
					
						
						| 
							 | 
						            json.dump({"problem": f"What is {a} times {b}?", "answer": str(a * b)}, f) | 
					
					
						
						| 
							 | 
						            f.write("\n") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def prepare_datasets(output_dir): | 
					
					
						
						| 
							 | 
						    """Prepare train and test datasets ensuring no overlap for all 1x1 to 15x15 combinations.""" | 
					
					
						
						| 
							 | 
						    output_dir = Path(output_dir) | 
					
					
						
						| 
							 | 
						    output_dir.mkdir(parents=True, exist_ok=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    all_datasets = generate_unique_multiplication_data(a_max=15, b_max=15, n_train=1000, n_test=100) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    train_files, test_files = [], [] | 
					
					
						
						| 
							 | 
						    for name, data in all_datasets.items(): | 
					
					
						
						| 
							 | 
						        train_file = output_dir / f"multiplication_train_{name}.jsonl" | 
					
					
						
						| 
							 | 
						        test_file = output_dir / f"multiplication_test_{name}.jsonl" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        save_to_jsonl(data["train"], train_file) | 
					
					
						
						| 
							 | 
						        save_to_jsonl(data["test"], test_file) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        train_files.append(train_file) | 
					
					
						
						| 
							 | 
						        test_files.append(test_file) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"\n✅ Datasets saved to {output_dir}") | 
					
					
						
						| 
							 | 
						    return train_files, test_files | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def process_file(file_path): | 
					
					
						
						| 
							 | 
						    """Convert JSONL data into Hugging Face dataset format.""" | 
					
					
						
						| 
							 | 
						    with open(file_path, "r") as f: | 
					
					
						
						| 
							 | 
						        data = [json.loads(line.strip()) for line in f if line.strip()] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    dataset = { | 
					
					
						
						| 
							 | 
						        "messages": [[ | 
					
					
						
						| 
							 | 
						            {"role": "user", "content": item["problem"]}, | 
					
					
						
						| 
							 | 
						            {"role": "assistant", "content": item["answer"]}, | 
					
					
						
						| 
							 | 
						        ] for item in data], | 
					
					
						
						| 
							 | 
						        "ground_truth": [item["answer"] for item in data], | 
					
					
						
						| 
							 | 
						        "dataset": ["multiplication"] * len(data), | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    return datasets.Dataset.from_dict(dataset) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def push_to_huggingface(train_files, test_files, hf_entity): | 
					
					
						
						| 
							 | 
						    """Push datasets to Hugging Face Hub and print the dataset link.""" | 
					
					
						
						| 
							 | 
						    api = HfApi() | 
					
					
						
						| 
							 | 
						    hf_entity = hf_entity or api.whoami()["name"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print("\n📤 Uploading datasets to Hugging Face...\n") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for file in train_files + test_files: | 
					
					
						
						| 
							 | 
						        dataset = process_file(file) | 
					
					
						
						| 
							 | 
						        dataset_name = file.stem | 
					
					
						
						| 
							 | 
						        repo_id = f"{hf_entity}/{dataset_name}" | 
					
					
						
						| 
							 | 
						        hf_url = f"https://huggingface.co/datasets/{repo_id}" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        print(f"✅ Dataset uploaded: {dataset_name}") | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        dataset.push_to_hub(repo_id) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        api.upload_file( | 
					
					
						
						| 
							 | 
						            path_or_fileobj=__file__, | 
					
					
						
						| 
							 | 
						            path_in_repo="create_dataset.py", | 
					
					
						
						| 
							 | 
						            repo_type="dataset", | 
					
					
						
						| 
							 | 
						            repo_id=repo_id, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        repo_card = RepoCard( | 
					
					
						
						| 
							 | 
						            content=f"""\ | 
					
					
						
						| 
							 | 
						# Multiplication Dataset - {dataset_name} | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						This dataset contains multiplication problems for numbers up to 15x15. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Dataset Format | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						- `messages`: User question and assistant answer. | 
					
					
						
						| 
							 | 
						- `ground_truth`: Correct multiplication result. | 
					
					
						
						| 
							 | 
						- `dataset`: "multiplication" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Hugging Face Dataset Link | 
					
					
						
						| 
							 | 
						➡️ [View dataset on Hugging Face]({hf_url}) | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        repo_card.push_to_hub(repo_id, repo_type="dataset") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def main(): | 
					
					
						
						| 
							 | 
						    parser = argparse.ArgumentParser() | 
					
					
						
						| 
							 | 
						    parser.add_argument("--output_dir", type=str, default="math_data", help="Output directory") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--push_to_hub", action="store_true", help="Upload to Hugging Face") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--hf_entity", type=str, default=None, help="Hugging Face entity") | 
					
					
						
						| 
							 | 
						    args = parser.parse_args() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    train_files, test_files = prepare_datasets(args.output_dir) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if args.push_to_hub: | 
					
					
						
						| 
							 | 
						        push_to_huggingface(train_files, test_files, args.hf_entity) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    main() | 
					
					
						
						| 
							 | 
						
 |