nouhad commited on
Commit
6bf48dc
·
verified ·
1 Parent(s): 5e9d07e

Upload create_dataset.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. create_dataset.py +128 -0
create_dataset.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import argparse
3
+ import random
4
+ from pathlib import Path
5
+ from tqdm import tqdm
6
+ import datasets
7
+ from huggingface_hub import HfApi, RepoCard
8
+ from transformers import HfArgumentParser
9
+
10
+ random.seed(0)
11
+
12
+ def generate_unique_multiplication_data(a_max, b_max, n_train, n_test):
13
+ """Generate train and test datasets for each multiplication range ensuring no overlap."""
14
+ datasets = {}
15
+
16
+ for a in range(1, a_max + 1):
17
+ for b in range(1, b_max + 1):
18
+ all_pairs = [(x, y) for x in range(1, a + 1) for y in range(1, b + 1)]
19
+
20
+ # Convert to list before sampling to avoid Python 3.9+ warning
21
+ test_data = set(random.sample(list(all_pairs), min(n_test, len(all_pairs))))
22
+ train_data = set(random.sample(list(set(all_pairs) - test_data), min(n_train, len(set(all_pairs) - test_data))))
23
+
24
+ datasets[f"{a}x{b}"] = {"train": list(train_data), "test": list(test_data)}
25
+
26
+ return datasets
27
+
28
+ def save_to_jsonl(data, file_path):
29
+ """Save dataset to JSONL format."""
30
+ with open(file_path, "w") as f:
31
+ for a, b in data:
32
+ json.dump({"problem": f"What is {a} times {b}?", "answer": str(a * b)}, f)
33
+ f.write("\n")
34
+
35
+ def prepare_datasets(output_dir):
36
+ """Prepare train and test datasets ensuring no overlap for all 1x1 to 15x15 combinations."""
37
+ output_dir = Path(output_dir)
38
+ output_dir.mkdir(parents=True, exist_ok=True)
39
+
40
+ all_datasets = generate_unique_multiplication_data(a_max=15, b_max=15, n_train=1000, n_test=100)
41
+
42
+ train_files, test_files = [], []
43
+ for name, data in all_datasets.items():
44
+ train_file = output_dir / f"multiplication_train_{name}.jsonl"
45
+ test_file = output_dir / f"multiplication_test_{name}.jsonl"
46
+
47
+ save_to_jsonl(data["train"], train_file)
48
+ save_to_jsonl(data["test"], test_file)
49
+
50
+ train_files.append(train_file)
51
+ test_files.append(test_file)
52
+
53
+ print(f"\n✅ Datasets saved to {output_dir}")
54
+ return train_files, test_files
55
+
56
+ def process_file(file_path):
57
+ """Convert JSONL data into Hugging Face dataset format."""
58
+ with open(file_path, "r") as f:
59
+ data = [json.loads(line.strip()) for line in f if line.strip()]
60
+
61
+ dataset = {
62
+ "messages": [[
63
+ {"role": "user", "content": item["problem"]},
64
+ {"role": "assistant", "content": item["answer"]},
65
+ ] for item in data],
66
+ "ground_truth": [item["answer"] for item in data],
67
+ "dataset": ["multiplication"] * len(data),
68
+ }
69
+ return datasets.Dataset.from_dict(dataset)
70
+
71
+ def push_to_huggingface(train_files, test_files, hf_entity):
72
+ """Push datasets to Hugging Face Hub and print the dataset link."""
73
+ api = HfApi()
74
+ hf_entity = hf_entity or api.whoami()["name"]
75
+
76
+ print("\n📤 Uploading datasets to Hugging Face...\n")
77
+
78
+ for file in train_files + test_files:
79
+ dataset = process_file(file)
80
+ dataset_name = file.stem
81
+ repo_id = f"{hf_entity}/{dataset_name}"
82
+ hf_url = f"https://huggingface.co/datasets/{repo_id}"
83
+
84
+ print(f"✅ Dataset uploaded: {dataset_name}")
85
+ # print(f"🔗 Click to view: {hf_url}\n") # 👈 PRINTS THE LINK
86
+
87
+ dataset.push_to_hub(repo_id)
88
+
89
+ api.upload_file(
90
+ path_or_fileobj=__file__,
91
+ path_in_repo="create_dataset.py",
92
+ repo_type="dataset",
93
+ repo_id=repo_id,
94
+ )
95
+
96
+ # Add RepoCard with Hugging Face link
97
+ repo_card = RepoCard(
98
+ content=f"""\
99
+ # Multiplication Dataset - {dataset_name}
100
+
101
+ This dataset contains multiplication problems for numbers up to 15x15.
102
+
103
+ ## Dataset Format
104
+
105
+ - `messages`: User question and assistant answer.
106
+ - `ground_truth`: Correct multiplication result.
107
+ - `dataset`: "multiplication"
108
+
109
+ ## Hugging Face Dataset Link
110
+ ➡️ [View dataset on Hugging Face]({hf_url})
111
+ """
112
+ )
113
+ repo_card.push_to_hub(repo_id, repo_type="dataset")
114
+
115
+ def main():
116
+ parser = argparse.ArgumentParser()
117
+ parser.add_argument("--output_dir", type=str, default="math_data", help="Output directory")
118
+ parser.add_argument("--push_to_hub", action="store_true", help="Upload to Hugging Face")
119
+ parser.add_argument("--hf_entity", type=str, default=None, help="Hugging Face entity")
120
+ args = parser.parse_args()
121
+
122
+ train_files, test_files = prepare_datasets(args.output_dir)
123
+
124
+ if args.push_to_hub:
125
+ push_to_huggingface(train_files, test_files, args.hf_entity)
126
+
127
+ if __name__ == "__main__":
128
+ main()