import json import argparse import random from pathlib import Path from tqdm import tqdm import datasets from huggingface_hub import HfApi, RepoCard from transformers import HfArgumentParser random.seed(0) def generate_unique_multiplication_data(a_max, b_max, n_train, n_test): """Generate train and test datasets for each multiplication range ensuring no overlap.""" datasets = {} for a in range(1, a_max + 1): for b in range(1, b_max + 1): all_pairs = [(x, y) for x in range(1, a + 1) for y in range(1, b + 1)] # Convert to list before sampling to avoid Python 3.9+ warning test_data = set(random.sample(list(all_pairs), min(n_test, len(all_pairs)))) train_data = set(random.sample(list(set(all_pairs) - test_data), min(n_train, len(set(all_pairs) - test_data)))) datasets[f"{a}x{b}"] = {"train": list(train_data), "test": list(test_data)} return datasets def save_to_jsonl(data, file_path): """Save dataset to JSONL format.""" with open(file_path, "w") as f: for a, b in data: json.dump({"problem": f"What is {a} times {b}?", "answer": str(a * b)}, f) f.write("\n") def prepare_datasets(output_dir): """Prepare train and test datasets ensuring no overlap for all 1x1 to 15x15 combinations.""" output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) all_datasets = generate_unique_multiplication_data(a_max=15, b_max=15, n_train=1000, n_test=100) train_files, test_files = [], [] for name, data in all_datasets.items(): train_file = output_dir / f"multiplication_train_{name}.jsonl" test_file = output_dir / f"multiplication_test_{name}.jsonl" save_to_jsonl(data["train"], train_file) save_to_jsonl(data["test"], test_file) train_files.append(train_file) test_files.append(test_file) print(f"\nāœ… Datasets saved to {output_dir}") return train_files, test_files def process_file(file_path): """Convert JSONL data into Hugging Face dataset format.""" with open(file_path, "r") as f: data = [json.loads(line.strip()) for line in f if line.strip()] dataset = { "messages": [[ {"role": "user", "content": item["problem"]}, {"role": "assistant", "content": item["answer"]}, ] for item in data], "ground_truth": [item["answer"] for item in data], "dataset": ["multiplication"] * len(data), } return datasets.Dataset.from_dict(dataset) def push_to_huggingface(train_files, test_files, hf_entity): """Push datasets to Hugging Face Hub and print the dataset link.""" api = HfApi() hf_entity = hf_entity or api.whoami()["name"] print("\nšŸ“¤ Uploading datasets to Hugging Face...\n") for file in train_files + test_files: dataset = process_file(file) dataset_name = file.stem repo_id = f"{hf_entity}/{dataset_name}" hf_url = f"https://huggingface.co/datasets/{repo_id}" print(f"āœ… Dataset uploaded: {dataset_name}") # print(f"šŸ”— Click to view: {hf_url}\n") # šŸ‘ˆ PRINTS THE LINK dataset.push_to_hub(repo_id) api.upload_file( path_or_fileobj=__file__, path_in_repo="create_dataset.py", repo_type="dataset", repo_id=repo_id, ) # Add RepoCard with Hugging Face link repo_card = RepoCard( content=f"""\ # Multiplication Dataset - {dataset_name} This dataset contains multiplication problems for numbers up to 15x15. ## Dataset Format - `messages`: User question and assistant answer. - `ground_truth`: Correct multiplication result. - `dataset`: "multiplication" ## Hugging Face Dataset Link āž”ļø [View dataset on Hugging Face]({hf_url}) """ ) repo_card.push_to_hub(repo_id, repo_type="dataset") def main(): parser = argparse.ArgumentParser() parser.add_argument("--output_dir", type=str, default="math_data", help="Output directory") parser.add_argument("--push_to_hub", action="store_true", help="Upload to Hugging Face") parser.add_argument("--hf_entity", type=str, default=None, help="Hugging Face entity") args = parser.parse_args() train_files, test_files = prepare_datasets(args.output_dir) if args.push_to_hub: push_to_huggingface(train_files, test_files, args.hf_entity) if __name__ == "__main__": main()