|
|
import json |
|
|
import argparse |
|
|
import random |
|
|
from pathlib import Path |
|
|
from tqdm import tqdm |
|
|
import datasets |
|
|
from huggingface_hub import HfApi, RepoCard |
|
|
from transformers import HfArgumentParser |
|
|
|
|
|
random.seed(0) |
|
|
|
|
|
def generate_unique_multiplication_data(a_max, b_max, n_train, n_test): |
|
|
"""Generate train and test datasets for each multiplication range ensuring no overlap.""" |
|
|
datasets = {} |
|
|
|
|
|
for a in range(1, a_max + 1): |
|
|
for b in range(1, b_max + 1): |
|
|
all_pairs = [(x, y) for x in range(1, a + 1) for y in range(1, b + 1)] |
|
|
|
|
|
|
|
|
test_data = set(random.sample(list(all_pairs), min(n_test, len(all_pairs)))) |
|
|
train_data = set(random.sample(list(set(all_pairs) - test_data), min(n_train, len(set(all_pairs) - test_data)))) |
|
|
|
|
|
datasets[f"{a}x{b}"] = {"train": list(train_data), "test": list(test_data)} |
|
|
|
|
|
return datasets |
|
|
|
|
|
def save_to_jsonl(data, file_path): |
|
|
"""Save dataset to JSONL format.""" |
|
|
with open(file_path, "w") as f: |
|
|
for a, b in data: |
|
|
json.dump({"problem": f"What is {a} times {b}?", "answer": str(a * b)}, f) |
|
|
f.write("\n") |
|
|
|
|
|
def prepare_datasets(output_dir): |
|
|
"""Prepare train and test datasets ensuring no overlap for all 1x1 to 15x15 combinations.""" |
|
|
output_dir = Path(output_dir) |
|
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
all_datasets = generate_unique_multiplication_data(a_max=15, b_max=15, n_train=1000, n_test=100) |
|
|
|
|
|
train_files, test_files = [], [] |
|
|
for name, data in all_datasets.items(): |
|
|
train_file = output_dir / f"multiplication_train_{name}.jsonl" |
|
|
test_file = output_dir / f"multiplication_test_{name}.jsonl" |
|
|
|
|
|
save_to_jsonl(data["train"], train_file) |
|
|
save_to_jsonl(data["test"], test_file) |
|
|
|
|
|
train_files.append(train_file) |
|
|
test_files.append(test_file) |
|
|
|
|
|
print(f"\n✅ Datasets saved to {output_dir}") |
|
|
return train_files, test_files |
|
|
|
|
|
def process_file(file_path): |
|
|
"""Convert JSONL data into Hugging Face dataset format.""" |
|
|
with open(file_path, "r") as f: |
|
|
data = [json.loads(line.strip()) for line in f if line.strip()] |
|
|
|
|
|
dataset = { |
|
|
"messages": [[ |
|
|
{"role": "user", "content": item["problem"]}, |
|
|
{"role": "assistant", "content": item["answer"]}, |
|
|
] for item in data], |
|
|
"ground_truth": [item["answer"] for item in data], |
|
|
"dataset": ["multiplication"] * len(data), |
|
|
} |
|
|
return datasets.Dataset.from_dict(dataset) |
|
|
|
|
|
def push_to_huggingface(train_files, test_files, hf_entity): |
|
|
"""Push datasets to Hugging Face Hub and print the dataset link.""" |
|
|
api = HfApi() |
|
|
hf_entity = hf_entity or api.whoami()["name"] |
|
|
|
|
|
print("\n📤 Uploading datasets to Hugging Face...\n") |
|
|
|
|
|
for file in train_files + test_files: |
|
|
dataset = process_file(file) |
|
|
dataset_name = file.stem |
|
|
repo_id = f"{hf_entity}/{dataset_name}" |
|
|
hf_url = f"https://huggingface.co/datasets/{repo_id}" |
|
|
|
|
|
print(f"✅ Dataset uploaded: {dataset_name}") |
|
|
|
|
|
|
|
|
dataset.push_to_hub(repo_id) |
|
|
|
|
|
api.upload_file( |
|
|
path_or_fileobj=__file__, |
|
|
path_in_repo="create_dataset.py", |
|
|
repo_type="dataset", |
|
|
repo_id=repo_id, |
|
|
) |
|
|
|
|
|
|
|
|
repo_card = RepoCard( |
|
|
content=f"""\ |
|
|
# Multiplication Dataset - {dataset_name} |
|
|
|
|
|
This dataset contains multiplication problems for numbers up to 15x15. |
|
|
|
|
|
## Dataset Format |
|
|
|
|
|
- `messages`: User question and assistant answer. |
|
|
- `ground_truth`: Correct multiplication result. |
|
|
- `dataset`: "multiplication" |
|
|
|
|
|
## Hugging Face Dataset Link |
|
|
➡️ [View dataset on Hugging Face]({hf_url}) |
|
|
""" |
|
|
) |
|
|
repo_card.push_to_hub(repo_id, repo_type="dataset") |
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--output_dir", type=str, default="math_data", help="Output directory") |
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Upload to Hugging Face") |
|
|
parser.add_argument("--hf_entity", type=str, default=None, help="Hugging Face entity") |
|
|
args = parser.parse_args() |
|
|
|
|
|
train_files, test_files = prepare_datasets(args.output_dir) |
|
|
|
|
|
if args.push_to_hub: |
|
|
push_to_huggingface(train_files, test_files, args.hf_entity) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|