multi-relational-multi-party-chat-corpus / multi-relational-multi-party-chat-corpus.py
yamasy1549's picture
:page_facing_up: Add a loading script
8aa16b2
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Multi-Relational Multi-Party Chat Corpus (MRMP): Japanese text-based chats comprising first-time-meeting dialogues and family-included dialogues
This script is based on
https://github.com/huggingface/datasets/blob/d69d1c654c4645a0474731794a20d4c012d2d214/templates/new_dataset_script.py
"""
import json
import re
from pathlib import Path
import datasets
_CITATION = """\
@inproceedings{tsuda-etal-2025-multi-relational-multi-party-chat-corpus,
title = "Constructing a Multi-Party Conversational Corpus Focusing on Interlocutor Relationships",
author = "Tsuda, Taro and
Yamashita, Sanae and
Inoue, Koji and
Kawahara, Tatsuya
and Higashinaka, Ryuichiro",
booktitle="Proceedings of the 29th Workshop on the Semantics and Pragmatics of Dialogue",
year = "2025",
pages = "193--202"
}
@inproceedings{tsuda-etal-2025-multi-relational-multi-party-chat-corpus-ja,
title = "{M}ulti-{R}elational {M}ulti-{P}arty {C}hat {C}orpus: 話者間の関係性に着目したマルチパーティ雑談対話コーパス",
author = "津田 太郎 and 山下 紗苗 and 井上 昂治 and 河原 達也 and 東中 竜一郎",
booktitle = "言語処理学会第31回年次大会発表論文集",
year = "2025",
pages = "4011--4016"
}
"""
_DESCRIPTION = """\
Multi-Relational Multi-Party Chat Corpus (MRMP): Japanese text-based chats comprising first-time-meeting dialogues and family-included dialogues
"""
_HOMEPAGE = "https://github.com/nu-dialogue/multi-relational-multi-party-chat-corpus/"
_LICENSE = "CC BY-ND 4.0"
_VERSION = "1.0.0"
_URL = f"https://github.com/nu-dialogue/multi-relational-multi-party-chat-corpus/archive/refs/tags/v{_VERSION}.zip"
class MultiRelationalMultiPartyChatCorpus(datasets.GeneratorBasedBuilder):
"""MultiRelationalMultiPartyChatCorpus consists of dialogues and interlocutor information."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="dialogue",
version=VERSION,
description="This part contains dialogues"
),
datasets.BuilderConfig(
name="interlocutor",
version=VERSION,
description="This part contains interlocutor information"
)
]
DEFAULT_CONFIG_NAME = "dialogue"
def _info(self):
if self.config.name == "dialogue":
features = datasets.Features(
{
"dialogue_id": datasets.Value("string"),
"dialogue_type": datasets.ClassLabel(names=["First time", "Family"]),
"interlocutors": datasets.Sequence(datasets.Value("string"), length=3),
"relationship": datasets.Sequence(datasets.Value("string")),
"utterances": datasets.Sequence(
{
"utterance_id": datasets.Value("int32"),
"interlocutor_id": datasets.Value("string"),
"text": datasets.Value("string"),
"mention_to": datasets.Sequence(datasets.Value("string")),
}
),
"evaluations": datasets.Sequence(
{
"interlocutor_id": datasets.Value("string"),
"informativeness": datasets.Value("int32"),
"comprehension": datasets.Value("int32"),
"familiarity": datasets.Value("int32"),
"interest": datasets.Value("int32"),
"proactiveness": datasets.Value("int32"),
"satisfaction": datasets.Value("int32")
}
)
}
)
elif self.config.name == "interlocutor":
features = datasets.Features(
{
"interlocutor_id": datasets.Value("string"),
"persona": datasets.Sequence(datasets.Value("string"), length=10),
"personality": {
"BigFive_Openness": datasets.Value("float32"),
"BigFive_Conscientiousness": datasets.Value("float32"),
"BigFive_Extraversion": datasets.Value("float32"),
"BigFive_Agreeableness": datasets.Value("float32"),
"BigFive_Neuroticism": datasets.Value("float32"),
"KiSS18_BasicSkill": datasets.Value("float32"),
"KiSS18_AdvancedSkill": datasets.Value("float32"),
"KiSS18_EmotionalManagementSkill": datasets.Value("float32"),
"KiSS18_OffenceManagementSkill": datasets.Value("float32"),
"KiSS18_StressManagementSkill": datasets.Value("float32"),
"KiSS18_PlanningSkill": datasets.Value("float32"),
"IOS": datasets.Value("int32"),
"ATQ_Fear": datasets.Value("float32"),
"ATQ_Frustration": datasets.Value("float32"),
"ATQ_Sadness": datasets.Value("float32"),
"ATQ_Discomfort": datasets.Value("float32"),
"ATQ_ActivationControl": datasets.Value("float32"),
"ATQ_AttentionalControl": datasets.Value("float32"),
"ATQ_InhibitoryControl": datasets.Value("float32"),
"ATQ_Sociability": datasets.Value("float32"),
"ATQ_HighIntensityPleasure": datasets.Value("float32"),
"ATQ_PositiveAffect": datasets.Value("float32"),
"ATQ_NeutralPerceptualSensitivity": datasets.Value("float32"),
"ATQ_AffectivePerceptualSensitivity": datasets.Value("float32"),
"ATQ_AssociativeSensitivity": datasets.Value("float32"),
"SMS_Extraversion": datasets.Value("float32"),
"SMS_OtherDirectedness": datasets.Value("float32"),
"SMS_Acting": datasets.Value("float32"),
},
"demographic_information": {
"gender": datasets.ClassLabel(names=["Male", "Female", "Other"]),
"age": datasets.ClassLabel(names=["-19", "20-29", "30-39", "40-49", "50-59", "60-69"]),
"education": datasets.ClassLabel(names=["High school graduate", "Two-year college", "Four-year college", "Postgraduate", "Other"]),
"employment_status": datasets.ClassLabel(names=["Employed", "Homemaker", "Student", "Retired", "Unable to work", "None"]),
"region_of_residence": datasets.ClassLabel(names=["Hokkaido", "Aomori", "Iwate", "Miyagi", "Akita", "Yamagata", "Fukushima", "Ibaraki", "Tochigi", "Gunma", "Saitama", "Chiba", "Tokyo", "Kanagawa", "Niigata", "Toyama", "Ishikawa", "Fukui", "Yamanashi", "Nagano", "Gifu", "Shizuoka", "Aichi", "Mie", "Shiga", "Kyoto", "Osaka", "Hyogo", "Nara", "Wakayama", "Tottori", "Shimane", "Okayama", "Hiroshima", "Yamaguchi", "Tokushima", "Kagawa", "Ehime", "Kochi", "Fukuoka", "Saga", "Nagasaki", "Kumamoto", "Oita", "Miyazaki", "Kagoshima", "Okinawa"]),
},
"text_chat_experience": {
"age_of_first_chat": datasets.ClassLabel(names=["-9", "10-19", "20-29", "30-39", "40-49", "50-59"]),
"frequency": datasets.ClassLabel(names=["Every day", "Once every few days", "Once a week", "Less frequent than these"]),
"chatting_partners": datasets.Sequence(datasets.ClassLabel(names=["Family", "Friend", "Colleague", "Other"])),
"typical_chat_content": datasets.Value("string"),
},
"pair_information": {
"pair_flag": datasets.Value("bool"),
"relationship": datasets.Sequence(datasets.ClassLabel(names=["Frequent acquaintance", "Someone known for years", "Someone engaged in joint activities"])),
"relationship_detail": datasets.Value("string"),
"pair_interlocutor_id": datasets.Value("string"),
}
}
)
else:
raise ValueError(f"Config name `{self.config.name}` is invalid.")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
if self.config.name == "dialogue":
filepath_list = Path(data_dir, f"multi-relational-multi-party-chat-corpus-{_VERSION}", "multi_relational_multi_party_chat_corpus", "dialogues").glob("**/*.json")
filepath_list = list(sorted(filepath_list, key=lambda x: self._natural_keys(x.stem)))
elif self.config.name == "interlocutor":
filepath_list = Path(data_dir, f"multi-relational-multi-party-chat-corpus-{_VERSION}", "multi_relational_multi_party_chat_corpus").glob("interlocutors.json")
else:
raise ValueError(f"Config name `{self.config.name}` is invalid.")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath_list": filepath_list
}
)
]
def _generate_examples(self, filepath_list):
if self.config.name == "dialogue":
for filepath in filepath_list:
key = filepath.stem
with open(filepath, encoding="utf-8") as f:
example = json.load(f)
yield key, example
elif self.config.name == "interlocutor":
for filepath in filepath_list:
with open(filepath, encoding="utf-8") as f:
interlocutors = json.load(f)
for key, example in interlocutors.items():
yield key, example
else:
raise ValueError(f"Config name `{self.config.name}` is invalid.")
def _atoi(self, text):
return int(text) if text.isdigit() else text
def _natural_keys(self, text):
return [self._atoi(c) for c in re.split(r'(\d+)', text)]