Datasets:
Commit
·
2f5bf7b
1
Parent(s):
1bd8bbc
add DE
Browse files- README.md +1 -0
- eval_example/embedding_eval.py +55 -0
- eval_example/utils.py +35 -0
- eval_example/visual_embedding_model.py +278 -0
README.md
CHANGED
@@ -25,6 +25,7 @@ license:
|
|
25 |
task_ids:
|
26 |
- document-retrieval
|
27 |
tags:
|
|
|
28 |
- image
|
29 |
configs:
|
30 |
- config_name: queries-ar
|
|
|
25 |
task_ids:
|
26 |
- document-retrieval
|
27 |
tags:
|
28 |
+
- text
|
29 |
- image
|
30 |
configs:
|
31 |
- config_name: queries-ar
|
eval_example/embedding_eval.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
from beir.retrieval.evaluation import EvaluateRetrieval
|
5 |
+
from beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES
|
6 |
+
|
7 |
+
from utils import load_data
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from visual_embedding_model import DSERetriever
|
12 |
+
|
13 |
+
def get_args():
|
14 |
+
parser = argparse.ArgumentParser()
|
15 |
+
parser.add_argument(
|
16 |
+
'--dataset',
|
17 |
+
type=str,
|
18 |
+
help='Dataset Name which will be parsed to datasets.load_dataset function',
|
19 |
+
default='nvidia/miracl-vision'
|
20 |
+
)
|
21 |
+
parser.add_argument(
|
22 |
+
'--language',
|
23 |
+
type=str,
|
24 |
+
help='language to evaluate',
|
25 |
+
default='sw'
|
26 |
+
)
|
27 |
+
return parser.parse_args()
|
28 |
+
|
29 |
+
if __name__ == '__main__':
|
30 |
+
args = get_args()
|
31 |
+
tracker = None
|
32 |
+
|
33 |
+
queries, corpus, qrels, images = load_data(
|
34 |
+
args.dataset,
|
35 |
+
args.language
|
36 |
+
)
|
37 |
+
model = DSERetriever(
|
38 |
+
model_name_or_path='MrLight/dse-qwen2-2b-mrl-v1',
|
39 |
+
images=images
|
40 |
+
)
|
41 |
+
dres_model = DRES(
|
42 |
+
model,
|
43 |
+
corpus_chunk_size=250000,
|
44 |
+
batch_size=8
|
45 |
+
)
|
46 |
+
retriever = EvaluateRetrieval(
|
47 |
+
dres_model,
|
48 |
+
score_function='dot',
|
49 |
+
k_values = [1,5,10,100]
|
50 |
+
)
|
51 |
+
|
52 |
+
results = retriever.retrieve(corpus, queries)
|
53 |
+
|
54 |
+
ndcg, map_, recall, precision = retriever.evaluate(qrels, results, retriever.k_values, ignore_identical_ids=True)
|
55 |
+
print(ndcg, map_, recall, precision)
|
eval_example/utils.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
|
3 |
+
def hf_beir_queries(queries):
|
4 |
+
queries_beir = {}
|
5 |
+
for query in queries:
|
6 |
+
queries_beir[query['_id']] = query['text']
|
7 |
+
return(queries_beir)
|
8 |
+
|
9 |
+
def hf_beir_corpus(corpus):
|
10 |
+
corpus_beir = {}
|
11 |
+
for doc in corpus:
|
12 |
+
corpus_beir[doc['_id']] = doc
|
13 |
+
return(corpus_beir)
|
14 |
+
|
15 |
+
def hf_beir_qrels(qrels):
|
16 |
+
qrels_beir = {}
|
17 |
+
for el in qrels:
|
18 |
+
if str(el['query-id']) in qrels_beir:
|
19 |
+
qrels_beir[str(el['query-id'])][str(el['corpus-id'])] = el['score']
|
20 |
+
else:
|
21 |
+
qrels_beir[str(el['query-id'])] = {str(el['corpus-id']): el['score']}
|
22 |
+
return(qrels_beir)
|
23 |
+
|
24 |
+
def load_data(
|
25 |
+
path,
|
26 |
+
lang
|
27 |
+
):
|
28 |
+
queries = load_dataset(path, 'queries-' + str(lang), split='default')
|
29 |
+
queries = hf_beir_queries(queries)
|
30 |
+
corpus = load_dataset(path, 'corpus-' + str(lang), split='default')
|
31 |
+
corpus = hf_beir_corpus(corpus)
|
32 |
+
qrels = load_dataset(path, 'qrels-' + str(lang), split='default')
|
33 |
+
qrels = hf_beir_qrels(qrels)
|
34 |
+
images = load_dataset(path, 'images-' + str(lang), split='default')
|
35 |
+
return(queries, corpus, qrels, images)
|
eval_example/visual_embedding_model.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from typing import List, Optional, cast, TypeVar
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import Tensor
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
|
10 |
+
from tqdm import tqdm
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
from datasets import Dataset
|
14 |
+
from torch.utils.data import Dataset as TorchDataset
|
15 |
+
|
16 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration, Qwen2VLForConditionalGeneration
|
17 |
+
from qwen_vl_utils import process_vision_info
|
18 |
+
|
19 |
+
T = TypeVar("T")
|
20 |
+
class ListDataset(TorchDataset[T]):
|
21 |
+
def __init__(self, elements: List[T]):
|
22 |
+
self.elements = elements
|
23 |
+
|
24 |
+
def __len__(self) -> int:
|
25 |
+
return len(self.elements)
|
26 |
+
|
27 |
+
def __getitem__(self, idx: int) -> T:
|
28 |
+
return self.elements[idx]
|
29 |
+
|
30 |
+
def get_torch_device(device: str = "auto") -> str:
|
31 |
+
"""
|
32 |
+
Returns the device (string) to be used by PyTorch.
|
33 |
+
|
34 |
+
`device` arg defaults to "auto" which will use:
|
35 |
+
- "cuda:0" if available
|
36 |
+
- else "mps" if available
|
37 |
+
- else "cpu".
|
38 |
+
"""
|
39 |
+
|
40 |
+
if device == "auto":
|
41 |
+
if torch.cuda.is_available():
|
42 |
+
device = "cuda"
|
43 |
+
elif torch.backends.mps.is_available(): # for Apple Silicon
|
44 |
+
device = "mps"
|
45 |
+
else:
|
46 |
+
device = "cpu"
|
47 |
+
|
48 |
+
return device
|
49 |
+
|
50 |
+
class ImageConverter():
|
51 |
+
|
52 |
+
def __init__(self,image_corpus, images_mapping):
|
53 |
+
self.image_corpus = image_corpus
|
54 |
+
self.images_mapping = images_mapping
|
55 |
+
|
56 |
+
def transform_func(self, example):
|
57 |
+
if 'image' in example:
|
58 |
+
if isinstance(example['image'], str):
|
59 |
+
example['image'] = self.image_corpus[self.images_mapping[example['image']]]
|
60 |
+
if isinstance(example['image'], list):
|
61 |
+
converted_images = []
|
62 |
+
for el in example['image']:
|
63 |
+
converted_images.append(self.image_corpus[self.images_mapping[el]]['image'].convert("RGB"))
|
64 |
+
example['image'] = converted_images
|
65 |
+
return(example)
|
66 |
+
|
67 |
+
class CustomRetriever(ABC):
|
68 |
+
"""
|
69 |
+
Custom model (dense embeddings).
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, model_name_or_path, device: str = "auto"):
|
73 |
+
super().__init__()
|
74 |
+
self.device = get_torch_device(device)
|
75 |
+
self.min_pixels=1*28*28
|
76 |
+
self.max_pixels=2560*28*28
|
77 |
+
self.processor = AutoProcessor.from_pretrained(model_name_or_path, min_pixels=self.min_pixels, max_pixels=self.max_pixels)
|
78 |
+
self.processor.padding_side = "left"
|
79 |
+
self.document_prefix = "What is shown in this image?"
|
80 |
+
self.query_prefix = "Query:"
|
81 |
+
self.pooling = "last"
|
82 |
+
|
83 |
+
@property
|
84 |
+
def use_visual_embedding(self) -> bool:
|
85 |
+
return True
|
86 |
+
|
87 |
+
@abstractmethod
|
88 |
+
def process_images(self, images: List[Image.Image], **kwargs):
|
89 |
+
pass
|
90 |
+
|
91 |
+
@abstractmethod
|
92 |
+
def process_queries(self, queries: List[str], **kwargs):
|
93 |
+
pass
|
94 |
+
|
95 |
+
def forward_queries(self, queries, batch_size: int, **kwargs) -> List[torch.Tensor]:
|
96 |
+
dataloader = DataLoader(
|
97 |
+
dataset=ListDataset[str](queries),
|
98 |
+
batch_size=batch_size,
|
99 |
+
shuffle=False,
|
100 |
+
collate_fn=self.process_queries,
|
101 |
+
num_workers=32
|
102 |
+
)
|
103 |
+
|
104 |
+
qs = []
|
105 |
+
for batch_query in tqdm(dataloader, desc="Forward pass queries..."):
|
106 |
+
with torch.no_grad():
|
107 |
+
with torch.autocast(device_type="cuda"):
|
108 |
+
batch_query = {k: v.to(self.device) for k, v in batch_query.items()}
|
109 |
+
embeddings_query = self.model(**batch_query, output_hidden_states=True).hidden_states[-1]
|
110 |
+
|
111 |
+
embeds = self.pool(
|
112 |
+
last_hidden_states=embeddings_query,
|
113 |
+
attention_mask=batch_query["attention_mask"],
|
114 |
+
pool_type=self.pooling,
|
115 |
+
)
|
116 |
+
embeds = F.normalize(embeds, dim=-1)
|
117 |
+
|
118 |
+
qs.append(embeds.contiguous())
|
119 |
+
|
120 |
+
|
121 |
+
return torch.cat(qs, dim=0).cpu()
|
122 |
+
|
123 |
+
def forward_documents(self, documents: List[str], batch_size: int, **kwargs) -> List[torch.Tensor]:
|
124 |
+
dataset = Dataset.from_dict({"image": documents})
|
125 |
+
if self.imageconverter:
|
126 |
+
dataset.set_transform(self.imageconverter.transform_func)
|
127 |
+
dataloader = DataLoader(
|
128 |
+
dataset=dataset,
|
129 |
+
batch_size=batch_size,
|
130 |
+
shuffle=False,
|
131 |
+
collate_fn=self.process_images,
|
132 |
+
num_workers=32
|
133 |
+
)
|
134 |
+
|
135 |
+
ds = []
|
136 |
+
for batch_doc in tqdm(dataloader, desc="Forward pass documents..."):
|
137 |
+
with torch.no_grad():
|
138 |
+
with torch.autocast(device_type="cuda"):
|
139 |
+
batch_doc = {k: v.to(self.device) for k, v in batch_doc.items()}
|
140 |
+
embeddings_doc = self.model(**batch_doc, output_hidden_states=True).hidden_states[-1]
|
141 |
+
embeds = self.pool(
|
142 |
+
last_hidden_states=embeddings_doc,
|
143 |
+
attention_mask=batch_doc["attention_mask"],
|
144 |
+
pool_type=self.pooling,
|
145 |
+
)
|
146 |
+
embeds = F.normalize(embeds, dim=-1)
|
147 |
+
|
148 |
+
ds.append(embeds.contiguous())
|
149 |
+
|
150 |
+
return torch.cat(ds, dim=0).cpu()
|
151 |
+
|
152 |
+
def pool(self, last_hidden_states: Tensor,
|
153 |
+
attention_mask: Tensor,
|
154 |
+
pool_type: str) -> Tensor:
|
155 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
156 |
+
|
157 |
+
if pool_type == "avg":
|
158 |
+
emb = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
159 |
+
elif pool_type == "weighted_avg":
|
160 |
+
emb = last_hidden.sum(dim=1)
|
161 |
+
elif pool_type == "cls":
|
162 |
+
emb = last_hidden[:, 0]
|
163 |
+
elif pool_type == "last":
|
164 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
165 |
+
if left_padding:
|
166 |
+
emb = last_hidden[:, -1]
|
167 |
+
else:
|
168 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
169 |
+
batch_size = last_hidden.shape[0]
|
170 |
+
emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
|
171 |
+
else:
|
172 |
+
raise ValueError(f"pool_type {pool_type} not supported")
|
173 |
+
|
174 |
+
return emb
|
175 |
+
|
176 |
+
class DSERetriever(CustomRetriever):
|
177 |
+
def __init__(self, model_name_or_path, device: str = "auto", images=None):
|
178 |
+
super().__init__(model_name_or_path, device)
|
179 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
180 |
+
model_name_or_path,
|
181 |
+
attn_implementation="flash_attention_2",
|
182 |
+
torch_dtype=torch.bfloat16,
|
183 |
+
device_map='cuda'
|
184 |
+
).eval()
|
185 |
+
model.padding_side = "left"
|
186 |
+
self.model = model
|
187 |
+
self.q_max_length=512
|
188 |
+
self.p_max_length=10240
|
189 |
+
self.set_resize = False
|
190 |
+
self.resized_height=760
|
191 |
+
self.resized_width=760
|
192 |
+
self.imageconverter = None
|
193 |
+
if images:
|
194 |
+
images_mapping = {}
|
195 |
+
for i,e in enumerate(images['file_name']):
|
196 |
+
images_mapping[e] = i
|
197 |
+
self.imageconverter = ImageConverter(image_corpus=images, images_mapping=images_mapping)
|
198 |
+
|
199 |
+
def process_images(self, documents, **kwargs):
|
200 |
+
if isinstance(documents, dict):
|
201 |
+
images = documents["image"]
|
202 |
+
assert len(texts) == len(images)
|
203 |
+
elif isinstance(documents, list):
|
204 |
+
images = [pair['image'] for pair in documents ]
|
205 |
+
else:
|
206 |
+
raise ValueError("The documents need to be a dict or list of dicts")
|
207 |
+
|
208 |
+
input_texts = []
|
209 |
+
doc_messages = []
|
210 |
+
doc_texts = [self.document_prefix] * len(images)
|
211 |
+
for doc_text, doc_image in zip(doc_texts, images):
|
212 |
+
message = [
|
213 |
+
{
|
214 |
+
'role': 'user',
|
215 |
+
'content': [
|
216 |
+
{'type': 'image', 'image': doc_image, 'resized_height': self.resized_height , 'resized_width': self.resized_width} if self.set_resize else {'type': 'image', 'image': doc_image},
|
217 |
+
{'type': 'text', 'text': 'What is shown in this image?'}
|
218 |
+
]
|
219 |
+
}
|
220 |
+
]
|
221 |
+
doc_messages.append(message)
|
222 |
+
doc_text = self.processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True) + "<|endoftext|>"
|
223 |
+
input_texts.append(doc_text)
|
224 |
+
|
225 |
+
images, videos = process_vision_info(doc_messages)
|
226 |
+
doc_batch_dict = self.processor(
|
227 |
+
text=input_texts,
|
228 |
+
images=images,
|
229 |
+
videos=videos,
|
230 |
+
truncation=True,
|
231 |
+
max_length=self.p_max_length,
|
232 |
+
padding='longest',
|
233 |
+
return_tensors='pt'
|
234 |
+
)
|
235 |
+
return doc_batch_dict
|
236 |
+
|
237 |
+
def process_queries(self, queries: List[str], **kwargs):
|
238 |
+
query_messages = []
|
239 |
+
for query in queries:
|
240 |
+
message = [
|
241 |
+
{
|
242 |
+
'role': 'user',
|
243 |
+
'content': [
|
244 |
+
{'type': 'image', 'image': Image.new('RGB', (28, 28)), 'resized_height':1 , 'resized_width':1}, # need a dummy image
|
245 |
+
{'type': 'text', 'text': f'Query: {query}'},
|
246 |
+
]
|
247 |
+
}
|
248 |
+
]
|
249 |
+
query_messages.append(message)
|
250 |
+
query_texts = [
|
251 |
+
x + "<|endoftext|>" for x in self.processor.apply_chat_template(query_messages, tokenize=False, add_generation_prompt=True)
|
252 |
+
]
|
253 |
+
images, videos = process_vision_info(query_messages)
|
254 |
+
query_batch_dict = self.processor(
|
255 |
+
text=query_texts,
|
256 |
+
images=images,
|
257 |
+
videos=videos,
|
258 |
+
padding='longest',
|
259 |
+
return_tensors='pt'
|
260 |
+
)
|
261 |
+
return query_batch_dict
|
262 |
+
|
263 |
+
def encode_queries(
|
264 |
+
self,
|
265 |
+
queries: List[str],
|
266 |
+
batch_size: int = 16,
|
267 |
+
**kwargs
|
268 |
+
):
|
269 |
+
return self.forward_queries(queries, batch_size=batch_size)
|
270 |
+
|
271 |
+
def encode_corpus(
|
272 |
+
self,
|
273 |
+
corpus,
|
274 |
+
batch_size: int = 16,
|
275 |
+
**kwargs
|
276 |
+
):
|
277 |
+
|
278 |
+
return self.forward_documents([el['image_id'] for el in corpus], batch_size=batch_size)
|