import os import argparse from beir.retrieval.evaluation import EvaluateRetrieval from beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES from utils import load_data import torch from visual_embedding_model import DSERetriever def get_args(): parser = argparse.ArgumentParser() parser.add_argument( '--dataset', type=str, help='Dataset Name which will be parsed to datasets.load_dataset function', default='nvidia/miracl-vision' ) parser.add_argument( '--language', type=str, help='language to evaluate', default='sw' ) return parser.parse_args() if __name__ == '__main__': args = get_args() tracker = None queries, corpus, qrels, images = load_data( args.dataset, args.language ) model = DSERetriever( model_name_or_path='MrLight/dse-qwen2-2b-mrl-v1', images=images ) dres_model = DRES( model, corpus_chunk_size=250000, batch_size=8 ) retriever = EvaluateRetrieval( dres_model, score_function='dot', k_values = [1,5,10,100] ) results = retriever.retrieve(corpus, queries) ndcg, map_, recall, precision = retriever.evaluate(qrels, results, retriever.k_values, ignore_identical_ids=True) print(ndcg, map_, recall, precision)