--- license: cc-by-nc-sa-4.0 task_categories: - robotics - image-to-3d tags: - slam - lidar - 3d-reconstruction - nerf - 3d-gaussian-splatting - localization - sfm - mvs - multimodal - oxford --- We present the Oxford Spires Dataset, captured in and around well-known landmarks in Oxford using a custom-built multi-sensor perception unit as well as a millimetre-accurate map from a terrestrial LiDAR scanner (TLS). The perception unit includes three global shutter colour cameras, an automotive 3D LiDAR scanner, and an inertial sensor — all precisely calibrated. - [Project page](https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/) - [Paper](https://huggingface.co/papers/2411.10546) - [Arxiv](https://arxiv.org/abs/2411.10546) - [Video](https://youtu.be/AKZ-YrOob_4?si=rY94Gn96V2zfQBNH) - [Code](https://github.com/ori-drs/oxford_spires_dataset) ### Sample Usage ### Download the Dataset You can download the dataset from Hugging Face using the provided script. You can specify which folders to download by changing the `example_pattern`. Core sequences are also defined in the script. ```bash python scripts/dataset_download.py ``` ### Install Python Tools Install `oxspires_tools` to access Python utilities for using the dataset: ```bash pip install . ``` To enable C++/Python bindings (requires PCL and Octomap): ```bash BUILD_CPP=1 pip install . ``` Alternatively, use the provided Docker container: ```bash docker compose -f .docker/oxspires/docker-compose.yml run --build oxspires_utils ``` ### Generate Depth Images The following script downloads synchronised images and LiDAR data from a sequence on Hugging Face and generates depth images, LiDAR overlaid on camera images, and surface normal images: ```bash python scripts/generate_depth.py ``` ### Citation If you use The Oxford Spires Dataset in your research, please cite the following paper: ```bibtex @article{tao2025spires, title={The Oxford Spires Dataset: Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and Radiance Field Methods}, author={Tao, Yifu and Mu{\~n}oz-Ba{\~n}{\'o}n, Miguel {\'A}ngel and Zhang, Lintong and Wang, Jiahao and Fu, Lanke Frank Tarimo and Fallon, Maurice}, journal={International Journal of Robotics Research}, year={2025}, } ```