Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -75,6 +75,45 @@ Each sample obtained by iterating through the WebDataset corresponds to one sola
|
|
| 75 |
* `aia_1600.npy`: (numpy.ndarray) Image data for AIA 1600 Å. Shape: (512, 512). Dtype: float32.
|
| 76 |
* `hmi_m.npy`: (numpy.ndarray) Line-of-sight magnetogram data from HMI. Shape: (512, 512). Dtype: float32.
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
## Data Generation and Processing
|
| 79 |
|
| 80 |
The SDOML-lite dataset is generated using the pipeline detailed in the [sdoml-lite GitHub repository](https://github.com/oxai4science/sdoml-lite). The download and processing scripts were run in July 2024 using distributed computing resources provided by Google Cloud for FDL-X Heliolab 2024, which is a public-private partnership AI research initiative with NASA, Google Cloud and Nvidia and other leading research organizations.
|
|
|
|
| 75 |
* `aia_1600.npy`: (numpy.ndarray) Image data for AIA 1600 Å. Shape: (512, 512). Dtype: float32.
|
| 76 |
* `hmi_m.npy`: (numpy.ndarray) Line-of-sight magnetogram data from HMI. Shape: (512, 512). Dtype: float32.
|
| 77 |
|
| 78 |
+
## Usage Example
|
| 79 |
+
|
| 80 |
+
```python
|
| 81 |
+
from datasets import load_dataset
|
| 82 |
+
from datetime import datetime
|
| 83 |
+
import numpy as np
|
| 84 |
+
import matplotlib.pyplot as plt
|
| 85 |
+
|
| 86 |
+
dataset = load_dataset("oxai4science/sdoml-lite", streaming=True)
|
| 87 |
+
```
|
| 88 |
+
```python
|
| 89 |
+
channels = ['hmi_m', 'aia_0131', 'aia_0171', 'aia_0193', 'aia_0211', 'aia_1600']
|
| 90 |
+
|
| 91 |
+
def process(data):
|
| 92 |
+
timestamp = datetime.strptime(data['__key__'], "%Y/%m/%d/%H%M")
|
| 93 |
+
d = []
|
| 94 |
+
for c in map(lambda x: x+'.npy', channels):
|
| 95 |
+
d.append(np.array(data[c]) if c in data else np.zeros((512, 512)))
|
| 96 |
+
return timestamp, np.stack(d, axis=0)
|
| 97 |
+
|
| 98 |
+
def plot(timestamp, data):
|
| 99 |
+
import matplotlib.pyplot as plt
|
| 100 |
+
_, axs = plt.subplots(2, 3, figsize=(15, 10))
|
| 101 |
+
axs = axs.flatten()
|
| 102 |
+
for i, c in enumerate(channels):
|
| 103 |
+
axs[i].imshow(data[i], cmap='gray')
|
| 104 |
+
axs[i].set_title(c)
|
| 105 |
+
axs[i].axis('off')
|
| 106 |
+
plt.tight_layout()
|
| 107 |
+
plt.suptitle(timestamp)
|
| 108 |
+
plt.subplots_adjust(top=0.94)
|
| 109 |
+
plt.show()
|
| 110 |
+
```
|
| 111 |
+
```python
|
| 112 |
+
sample = next(iter(dataset['train']))
|
| 113 |
+
timestamp, data = process(sample)
|
| 114 |
+
plot(timestamp, data)
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
## Data Generation and Processing
|
| 118 |
|
| 119 |
The SDOML-lite dataset is generated using the pipeline detailed in the [sdoml-lite GitHub repository](https://github.com/oxai4science/sdoml-lite). The download and processing scripts were run in July 2024 using distributed computing resources provided by Google Cloud for FDL-X Heliolab 2024, which is a public-private partnership AI research initiative with NASA, Google Cloud and Nvidia and other leading research organizations.
|