Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Comprehensive Symbolic Regression Surface Dataset
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
This dataset contains a comprehensive collection of symbolic regression problems focused on 3D surface modeling. The dataset includes 18 different categories of surface types, each with multiple instances, providing a diverse benchmark for symbolic regression algorithms.
|
| 6 |
+
|
| 7 |
+
## Dataset Structure
|
| 8 |
+
|
| 9 |
+
The dataset is organized in HDF5 format with the following structure:
|
| 10 |
+
|
| 11 |
+
```
|
| 12 |
+
/
|
| 13 |
+
├── Category_1/
|
| 14 |
+
│ ├── Instance_1/
|
| 15 |
+
│ │ ├── train_data (5000, 3) - Training data [x, y, z]
|
| 16 |
+
│ │ ├── test_data (500, 3) - Test data [x, y, z]
|
| 17 |
+
│ │ └── ood_test (500, 3) - Out-of-distribution test data [x, y, z]
|
| 18 |
+
│ └── Instance_2/
|
| 19 |
+
│ └── ...
|
| 20 |
+
└── Category_2/
|
| 21 |
+
└── ...
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
## Categories
|
| 25 |
+
|
| 26 |
+
1. **Algebraic_Manifolds_of_Higher_Degree** (24 instances)
|
| 27 |
+
2. **Bio-Inspired_Morphological_Surfaces** (10 instances)
|
| 28 |
+
3. **Complex_Composite_Surfaces** (10 instances)
|
| 29 |
+
4. **Complex_Morphological_Surfaces** (16 instances)
|
| 30 |
+
5. **Discrete_Symbolic_Grid_Surfaces** (10 instances)
|
| 31 |
+
6. **High_Dimensional_Parametric_Surfaces** (10 instances)
|
| 32 |
+
7. **Hybrid_Multi-Modal_Symbolic_Surfaces** (10 instances)
|
| 33 |
+
8. **Non-Canonical_3D_Geometric_Surfaces** (11 instances)
|
| 34 |
+
9. **Nonlinear_Dynamical_System_Surfaces** (9 instances)
|
| 35 |
+
10. **Piecewise_Regime_Surfaces** (10 instances)
|
| 36 |
+
11. **Procedural_Fractal_Surfaces** (10 instances)
|
| 37 |
+
12. **Quantum_Inspired_Surfaces** (10 instances)
|
| 38 |
+
13. **Stochastic_Process_Surfaces** (10 instances)
|
| 39 |
+
14. **Surrogate_Distilled_Symbolic_Approximations** (9 instances)
|
| 40 |
+
15. **Symbolic-Numeric_Composite_Surfaces** (10 instances)
|
| 41 |
+
16. **Tensor_Field_Surfaces** (10 instances)
|
| 42 |
+
17. **Topologically_Rich_Parametric_Surfaces** (10 instances)
|
| 43 |
+
18. **Transformed_Coordinate_Surfaces** (10 instances)
|
| 44 |
+
|
| 45 |
+
## Data Format
|
| 46 |
+
|
| 47 |
+
- **Input**: 2D coordinates (x, y)
|
| 48 |
+
- **Output**: Surface height (z)
|
| 49 |
+
- **Training set**: 5,000 points per instance
|
| 50 |
+
- **Test set**: 500 points per instance
|
| 51 |
+
- **Out-of-distribution test**: 500 points per instance
|
| 52 |
+
- **Data type**: float64
|
| 53 |
+
|
| 54 |
+
## Usage
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
import h5py
|
| 58 |
+
import numpy as np
|
| 59 |
+
|
| 60 |
+
# Load the dataset
|
| 61 |
+
with h5py.File('dataset.h5', 'r') as f:
|
| 62 |
+
# Access a specific category and instance
|
| 63 |
+
category = 'Bio-Inspired_Morphological_Surfaces'
|
| 64 |
+
instance = 'BIMS1'
|
| 65 |
+
|
| 66 |
+
# Load training data
|
| 67 |
+
train_data = f[f'{category}/{instance}/train_data'][:]
|
| 68 |
+
X_train = train_data[:, :2] # x, y coordinates
|
| 69 |
+
y_train = train_data[:, 2] # z values
|
| 70 |
+
|
| 71 |
+
# Load test data
|
| 72 |
+
test_data = f[f'{category}/{instance}/test_data'][:]
|
| 73 |
+
X_test = test_data[:, :2]
|
| 74 |
+
y_test = test_data[:, 2]
|
| 75 |
+
|
| 76 |
+
# Load out-of-distribution test data
|
| 77 |
+
ood_data = f[f'{category}/{instance}/ood_test'][:]
|
| 78 |
+
X_ood = ood_data[:, :2]
|
| 79 |
+
y_ood = ood_data[:, 2]
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
## Applications
|
| 83 |
+
|
| 84 |
+
This dataset is designed for:
|
| 85 |
+
- Symbolic regression algorithm benchmarking
|
| 86 |
+
- 3D surface modeling and reconstruction
|
| 87 |
+
- Function approximation research
|
| 88 |
+
- Out-of-distribution generalization studies
|
| 89 |
+
- Multi-modal symbolic learning
|
| 90 |
+
|
| 91 |
+
## Citation
|
| 92 |
+
|
| 93 |
+
If you use this dataset in your research, please cite:
|
| 94 |
+
|
| 95 |
+
```bibtex
|
| 96 |
+
@dataset{symbolic_regression_surfaces_2024,
|
| 97 |
+
title={Comprehensive Symbolic Regression Surface Dataset},
|
| 98 |
+
author={[Your Name]},
|
| 99 |
+
year={2024},
|
| 100 |
+
url={https://huggingface.co/datasets/[your-username]/[dataset-name]}
|
| 101 |
+
}
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
## License
|
| 105 |
+
|
| 106 |
+
[Specify your license here]
|
| 107 |
+
|
| 108 |
+
## Contact
|
| 109 |
+
|
| 110 |
+
[Your contact information]
|