pandoradox commited on
Commit
50f2de4
·
verified ·
1 Parent(s): 7b76052

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Comprehensive Symbolic Regression Surface Dataset
2
+
3
+ ## Overview
4
+
5
+ This dataset contains a comprehensive collection of symbolic regression problems focused on 3D surface modeling. The dataset includes 18 different categories of surface types, each with multiple instances, providing a diverse benchmark for symbolic regression algorithms.
6
+
7
+ ## Dataset Structure
8
+
9
+ The dataset is organized in HDF5 format with the following structure:
10
+
11
+ ```
12
+ /
13
+ ├── Category_1/
14
+ │ ├── Instance_1/
15
+ │ │ ├── train_data (5000, 3) - Training data [x, y, z]
16
+ │ │ ├── test_data (500, 3) - Test data [x, y, z]
17
+ │ │ └── ood_test (500, 3) - Out-of-distribution test data [x, y, z]
18
+ │ └── Instance_2/
19
+ │ └── ...
20
+ └── Category_2/
21
+ └── ...
22
+ ```
23
+
24
+ ## Categories
25
+
26
+ 1. **Algebraic_Manifolds_of_Higher_Degree** (24 instances)
27
+ 2. **Bio-Inspired_Morphological_Surfaces** (10 instances)
28
+ 3. **Complex_Composite_Surfaces** (10 instances)
29
+ 4. **Complex_Morphological_Surfaces** (16 instances)
30
+ 5. **Discrete_Symbolic_Grid_Surfaces** (10 instances)
31
+ 6. **High_Dimensional_Parametric_Surfaces** (10 instances)
32
+ 7. **Hybrid_Multi-Modal_Symbolic_Surfaces** (10 instances)
33
+ 8. **Non-Canonical_3D_Geometric_Surfaces** (11 instances)
34
+ 9. **Nonlinear_Dynamical_System_Surfaces** (9 instances)
35
+ 10. **Piecewise_Regime_Surfaces** (10 instances)
36
+ 11. **Procedural_Fractal_Surfaces** (10 instances)
37
+ 12. **Quantum_Inspired_Surfaces** (10 instances)
38
+ 13. **Stochastic_Process_Surfaces** (10 instances)
39
+ 14. **Surrogate_Distilled_Symbolic_Approximations** (9 instances)
40
+ 15. **Symbolic-Numeric_Composite_Surfaces** (10 instances)
41
+ 16. **Tensor_Field_Surfaces** (10 instances)
42
+ 17. **Topologically_Rich_Parametric_Surfaces** (10 instances)
43
+ 18. **Transformed_Coordinate_Surfaces** (10 instances)
44
+
45
+ ## Data Format
46
+
47
+ - **Input**: 2D coordinates (x, y)
48
+ - **Output**: Surface height (z)
49
+ - **Training set**: 5,000 points per instance
50
+ - **Test set**: 500 points per instance
51
+ - **Out-of-distribution test**: 500 points per instance
52
+ - **Data type**: float64
53
+
54
+ ## Usage
55
+
56
+ ```python
57
+ import h5py
58
+ import numpy as np
59
+
60
+ # Load the dataset
61
+ with h5py.File('dataset.h5', 'r') as f:
62
+ # Access a specific category and instance
63
+ category = 'Bio-Inspired_Morphological_Surfaces'
64
+ instance = 'BIMS1'
65
+
66
+ # Load training data
67
+ train_data = f[f'{category}/{instance}/train_data'][:]
68
+ X_train = train_data[:, :2] # x, y coordinates
69
+ y_train = train_data[:, 2] # z values
70
+
71
+ # Load test data
72
+ test_data = f[f'{category}/{instance}/test_data'][:]
73
+ X_test = test_data[:, :2]
74
+ y_test = test_data[:, 2]
75
+
76
+ # Load out-of-distribution test data
77
+ ood_data = f[f'{category}/{instance}/ood_test'][:]
78
+ X_ood = ood_data[:, :2]
79
+ y_ood = ood_data[:, 2]
80
+ ```
81
+
82
+ ## Applications
83
+
84
+ This dataset is designed for:
85
+ - Symbolic regression algorithm benchmarking
86
+ - 3D surface modeling and reconstruction
87
+ - Function approximation research
88
+ - Out-of-distribution generalization studies
89
+ - Multi-modal symbolic learning
90
+
91
+ ## Citation
92
+
93
+ If you use this dataset in your research, please cite:
94
+
95
+ ```bibtex
96
+ @dataset{symbolic_regression_surfaces_2024,
97
+ title={Comprehensive Symbolic Regression Surface Dataset},
98
+ author={[Your Name]},
99
+ year={2024},
100
+ url={https://huggingface.co/datasets/[your-username]/[dataset-name]}
101
+ }
102
+ ```
103
+
104
+ ## License
105
+
106
+ [Specify your license here]
107
+
108
+ ## Contact
109
+
110
+ [Your contact information]