Datasets:
File size: 18,107 Bytes
491efa9 dfd39c8 491efa9 ebb66e3 4154bb6 0e4bfab 4994230 26a4003 7ed19dd 0a5dc32 8ca885b f42ebf4 8a19f9f 6055297 6afb57f 7f01e90 283fd36 cd9b7a1 0e165ab 61ff132 67fa81a 2f115e3 c4cb2fb ee94ded 072791b 990804f 9c1846c a4a1cfd 9706a09 720996d 65cd986 0c1a438 7270167 b2fe85b ab5ec39 7e90d5a 80493a5 711eb41 3eea070 0f6f114 8a1f200 751f28b 1ed5173 294c36d 468adcb 9af8f7f ec05764 183ecd9 10d690f 896e539 e4505ea 008ed3b 87eac9b f3b86a5 733bbc3 120a591 3bfb7be 5efd620 bade976 c8a11f0 a018fd8 c2c8b2f eb2f656 4b7eb10 324299f 9297dc9 f2b8b90 7566ce2 a16bcb6 ee9430f a765c4e 7295e66 244f9b7 30021a0 af627c7 9d09359 4c739cd 235d0a0 1d32f17 f8363cc eba5303 a4e8cd9 50af4b7 87f189c c58cd13 c5654b2 f573c81 4698cbf 1ef133f 6559dce b430755 0401fbc c7c8b2a 8cb949a d55d236 f2b9b9c f110400 761b7f8 9ca49d8 5fef1f6 430827d c0fec66 35f870c 5ee7f96 a44c22f bbe344d 663e9a1 4197732 757cbe5 73a947a d201f60 4de494e 706951a 0fac70c cf66bdd 0fac70c 491efa9 ebb66e3 4154bb6 0e4bfab 4994230 26a4003 7ed19dd 0a5dc32 8ca885b f42ebf4 8a19f9f 6055297 6afb57f 7f01e90 283fd36 cd9b7a1 0e165ab 61ff132 67fa81a 2f115e3 c4cb2fb ee94ded 072791b 990804f 9c1846c a4a1cfd 9706a09 720996d 65cd986 0c1a438 7270167 b2fe85b ab5ec39 7e90d5a 80493a5 711eb41 3eea070 0f6f114 8a1f200 751f28b 1ed5173 294c36d 468adcb 9af8f7f ec05764 183ecd9 10d690f 896e539 e4505ea 008ed3b 87eac9b f3b86a5 733bbc3 120a591 3bfb7be 5efd620 bade976 c8a11f0 a018fd8 c2c8b2f eb2f656 4b7eb10 324299f 9297dc9 f2b8b90 7566ce2 a16bcb6 ee9430f a765c4e 7295e66 244f9b7 30021a0 af627c7 9d09359 4c739cd 235d0a0 1d32f17 f8363cc eba5303 a4e8cd9 dfd39c8 50af4b7 c58cd13 c5654b2 f573c81 4698cbf 1ef133f 6559dce b430755 0401fbc c7c8b2a 8cb949a 2536038 31d5bbc d55d236 f2b9b9c f110400 761b7f8 9ca49d8 5fef1f6 430827d c0fec66 35f870c 5ee7f96 a44c22f bbe344d 4197732 73a947a d201f60 4de494e 706951a df771b1 0fac70c c157616 9ef69bd 491efa9 c157616 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
---
language:
- multilingual
license: cc0-1.0
size_categories:
- 100M<n<1B
pretty_name: Wikidata Multilingual JSON Formatted with Wikipedia Sitelinks
dataset_info:
features:
- name: id
dtype: string
- name: labels
dtype: string
- name: descriptions
dtype: string
- name: aliases
dtype: string
- name: sitelinks
dtype: string
- name: claims
dtype: string
splits:
- name: chunk_0
num_bytes: 272641366678
num_examples: 992458
- name: chunk_1
num_bytes: 119503605074
num_examples: 802125
- name: chunk_2
num_bytes: 71868885766
num_examples: 589652
- name: chunk_3
num_bytes: 31595676608
num_examples: 310440
- name: chunk_4
num_bytes: 6872309253
num_examples: 43477
- name: chunk_5
num_bytes: 20860229805
num_examples: 156867
- name: chunk_6
num_bytes: 16996997790
num_examples: 141965
- name: chunk_7
num_bytes: 7007875127
num_examples: 74047
- name: chunk_8
num_bytes: 4138475350
num_examples: 27104
- name: chunk_9
num_bytes: 8035679356
num_examples: 70759
- name: chunk_10
num_bytes: 8005706414
num_examples: 71395
- name: chunk_11
num_bytes: 17457964901
num_examples: 186698
- name: chunk_12
num_bytes: 12057913487
num_examples: 153182
- name: chunk_13
num_bytes: 8130511187
num_examples: 137155
- name: chunk_14
num_bytes: 265651116427
num_examples: 929827
- name: chunk_15
num_bytes: 122047075327
num_examples: 853027
- name: chunk_16
num_bytes: 69501443929
num_examples: 571543
- name: chunk_17
num_bytes: 34807673229
num_examples: 335565
- name: chunk_18
num_bytes: 7427348180
num_examples: 47264
- name: chunk_19
num_bytes: 18307964638
num_examples: 135986
- name: chunk_20
num_bytes: 19259892221
num_examples: 160411
- name: chunk_21
num_bytes: 7293785541
num_examples: 76377
- name: chunk_22
num_bytes: 3984444472
num_examples: 26321
- name: chunk_23
num_bytes: 8099531752
num_examples: 70572
- name: chunk_24
num_bytes: 7617935921
num_examples: 68613
- name: chunk_25
num_bytes: 16895929818
num_examples: 179806
- name: chunk_26
num_bytes: 12798275491
num_examples: 159587
- name: chunk_27
num_bytes: 8412285424
num_examples: 139912
- name: chunk_112
num_bytes: 1606042179
num_examples: 26375
- name: chunk_111
num_bytes: 10417521978
num_examples: 166210
- name: chunk_110
num_bytes: 16386165596
num_examples: 190337
- name: chunk_109
num_bytes: 14897877828
num_examples: 155251
- name: chunk_108
num_bytes: 5519068438
num_examples: 39131
- name: chunk_107
num_bytes: 7097137693
num_examples: 60073
- name: chunk_106
num_bytes: 2857611279
num_examples: 19290
- name: chunk_105
num_bytes: 13483624541
num_examples: 142249
- name: chunk_104
num_bytes: 14812188533
num_examples: 106630
- name: chunk_28
num_bytes: 257904131376
num_examples: 876104
- name: chunk_103
num_bytes: 18057342692
num_examples: 135160
- name: chunk_29
num_bytes: 122459384499
num_examples: 864360
- name: chunk_30
num_bytes: 72346426292
num_examples: 590603
- name: chunk_31
num_bytes: 38314532991
num_examples: 358747
- name: chunk_32
num_bytes: 7478325751
num_examples: 47772
- name: chunk_33
num_bytes: 18217920307
num_examples: 135633
- name: chunk_34
num_bytes: 19315788977
num_examples: 159629
- name: chunk_36
num_bytes: 3682869243
num_examples: 24912
- name: chunk_37
num_bytes: 7926109466
num_examples: 69201
- name: chunk_38
num_bytes: 7582489542
num_examples: 67131
- name: chunk_102
num_bytes: 13106446451
num_examples: 86616
- name: chunk_39
num_bytes: 16230857546
num_examples: 172234
- name: chunk_40
num_bytes: 13611202971
num_examples: 167698
- name: chunk_41
num_bytes: 8608170321
num_examples: 142276
- name: chunk_101
num_bytes: 46674364869
num_examples: 484690
- name: chunk_100
num_bytes: 99693236548
num_examples: 662580
- name: chunk_50
num_bytes: 3695109520
num_examples: 24829
- name: chunk_51
num_bytes: 7800575135
num_examples: 68053
- name: chunk_52
num_bytes: 7140248933
num_examples: 63517
- name: chunk_99
num_bytes: 138928827303
num_examples: 903618
- name: chunk_53
num_bytes: 16068312383
num_examples: 167660
- name: chunk_54
num_bytes: 14234493468
num_examples: 175827
- name: chunk_55
num_bytes: 8787591286
num_examples: 142816
- name: chunk_56
num_bytes: 234960365367
num_examples: 765400
- name: chunk_42
num_bytes: 247188291579
num_examples: 821175
- name: chunk_57
num_bytes: 130416544232
num_examples: 900655
- name: chunk_58
num_bytes: 80474782842
num_examples: 628866
- name: chunk_59
num_bytes: 44293227753
num_examples: 396886
- name: chunk_60
num_bytes: 7362209129
num_examples: 46907
- name: chunk_61
num_bytes: 18058347228
num_examples: 135384
- name: chunk_62
num_bytes: 18531701743
num_examples: 154864
- name: chunk_63
num_bytes: 8938358248
num_examples: 88112
- name: chunk_64
num_bytes: 3498732863
num_examples: 23353
- name: chunk_65
num_bytes: 7723858753
num_examples: 67446
- name: chunk_66
num_bytes: 5977043401
num_examples: 40301
- name: chunk_67
num_bytes: 16432302739
num_examples: 176420
- name: chunk_68
num_bytes: 14998045764
num_examples: 183715
- name: chunk_69
num_bytes: 9204183924
num_examples: 149547
- name: chunk_35
num_bytes: 7766640167
num_examples: 81231
- name: chunk_70
num_bytes: 225368173008
num_examples: 713006
- name: chunk_73
num_bytes: 45277426046
num_examples: 419554
- name: chunk_74
num_bytes: 8176374672
num_examples: 52246
- name: chunk_75
num_bytes: 17954521517
num_examples: 134064
- name: chunk_46
num_bytes: 7424327377
num_examples: 47443
- name: chunk_76
num_bytes: 18004989826
num_examples: 153318
- name: chunk_77
num_bytes: 9698589407
num_examples: 92710
- name: chunk_78
num_bytes: 3426386917
num_examples: 22790
- name: chunk_79
num_bytes: 7575345418
num_examples: 66521
- name: chunk_80
num_bytes: 5361992759
num_examples: 34397
- name: chunk_81
num_bytes: 16300246875
num_examples: 173357
- name: chunk_82
num_bytes: 15268729987
num_examples: 186788
- name: chunk_47
num_bytes: 18094282159
num_examples: 134784
- name: chunk_48
num_bytes: 18514828892
num_examples: 155247
- name: chunk_49
num_bytes: 8690341769
num_examples: 86997
- name: chunk_84
num_bytes: 213699860800
num_examples: 657926
- name: chunk_95
num_bytes: 15258633995
num_examples: 162191
- name: chunk_94
num_bytes: 5363620795
num_examples: 33345
- name: chunk_93
num_bytes: 7351758274
num_examples: 65448
- name: chunk_92
num_bytes: 3201754977
num_examples: 21324
- name: chunk_91
num_bytes: 10873901165
num_examples: 101890
- name: chunk_90
num_bytes: 17456308814
num_examples: 146534
- name: chunk_85
num_bytes: 137080693402
num_examples: 902477
- name: chunk_89
num_bytes: 17840778874
num_examples: 133629
- name: chunk_83
num_bytes: 9606993530
num_examples: 153870
- name: chunk_86
num_bytes: 92644698272
num_examples: 655319
- name: chunk_98
num_bytes: 198182893319
num_examples: 598037
- name: chunk_97
num_bytes: 9968588214
num_examples: 159451
- name: chunk_72
num_bytes: 85682635765
num_examples: 652770
- name: chunk_96
num_bytes: 16087562650
num_examples: 192226
- name: chunk_45
num_bytes: 40788635471
num_examples: 374793
- name: chunk_87
num_bytes: 44930608581
num_examples: 455111
- name: chunk_88
num_bytes: 10529768499
num_examples: 69724
- name: chunk_43
num_bytes: 127380183973
num_examples: 892005
- name: chunk_44
num_bytes: 75757510521
num_examples: 600584
- name: chunk_71
num_bytes: 133442023167
num_examples: 901222
download_size: 1844938813418
dataset_size: 4816310500520
configs:
- config_name: default
data_files:
- split: chunk_0
path: data/chunk_0-*
- split: chunk_1
path: data/chunk_1-*
- split: chunk_2
path: data/chunk_2-*
- split: chunk_3
path: data/chunk_3-*
- split: chunk_4
path: data/chunk_4-*
- split: chunk_5
path: data/chunk_5-*
- split: chunk_6
path: data/chunk_6-*
- split: chunk_7
path: data/chunk_7-*
- split: chunk_8
path: data/chunk_8-*
- split: chunk_9
path: data/chunk_9-*
- split: chunk_10
path: data/chunk_10-*
- split: chunk_11
path: data/chunk_11-*
- split: chunk_12
path: data/chunk_12-*
- split: chunk_13
path: data/chunk_13-*
- split: chunk_14
path: data/chunk_14-*
- split: chunk_15
path: data/chunk_15-*
- split: chunk_16
path: data/chunk_16-*
- split: chunk_17
path: data/chunk_17-*
- split: chunk_18
path: data/chunk_18-*
- split: chunk_19
path: data/chunk_19-*
- split: chunk_20
path: data/chunk_20-*
- split: chunk_21
path: data/chunk_21-*
- split: chunk_22
path: data/chunk_22-*
- split: chunk_23
path: data/chunk_23-*
- split: chunk_24
path: data/chunk_24-*
- split: chunk_25
path: data/chunk_25-*
- split: chunk_26
path: data/chunk_26-*
- split: chunk_27
path: data/chunk_27-*
- split: chunk_112
path: data/chunk_112-*
- split: chunk_111
path: data/chunk_111-*
- split: chunk_110
path: data/chunk_110-*
- split: chunk_109
path: data/chunk_109-*
- split: chunk_108
path: data/chunk_108-*
- split: chunk_107
path: data/chunk_107-*
- split: chunk_106
path: data/chunk_106-*
- split: chunk_105
path: data/chunk_105-*
- split: chunk_104
path: data/chunk_104-*
- split: chunk_28
path: data/chunk_28-*
- split: chunk_103
path: data/chunk_103-*
- split: chunk_29
path: data/chunk_29-*
- split: chunk_30
path: data/chunk_30-*
- split: chunk_31
path: data/chunk_31-*
- split: chunk_32
path: data/chunk_32-*
- split: chunk_33
path: data/chunk_33-*
- split: chunk_34
path: data/chunk_34-*
- split: chunk_36
path: data/chunk_36-*
- split: chunk_37
path: data/chunk_37-*
- split: chunk_38
path: data/chunk_38-*
- split: chunk_102
path: data/chunk_102-*
- split: chunk_39
path: data/chunk_39-*
- split: chunk_40
path: data/chunk_40-*
- split: chunk_41
path: data/chunk_41-*
- split: chunk_101
path: data/chunk_101-*
- split: chunk_100
path: data/chunk_100-*
- split: chunk_50
path: data/chunk_50-*
- split: chunk_51
path: data/chunk_51-*
- split: chunk_52
path: data/chunk_52-*
- split: chunk_99
path: data/chunk_99-*
- split: chunk_53
path: data/chunk_53-*
- split: chunk_54
path: data/chunk_54-*
- split: chunk_55
path: data/chunk_55-*
- split: chunk_56
path: data/chunk_56-*
- split: chunk_42
path: data/chunk_42-*
- split: chunk_57
path: data/chunk_57-*
- split: chunk_58
path: data/chunk_58-*
- split: chunk_59
path: data/chunk_59-*
- split: chunk_60
path: data/chunk_60-*
- split: chunk_61
path: data/chunk_61-*
- split: chunk_62
path: data/chunk_62-*
- split: chunk_63
path: data/chunk_63-*
- split: chunk_64
path: data/chunk_64-*
- split: chunk_65
path: data/chunk_65-*
- split: chunk_66
path: data/chunk_66-*
- split: chunk_67
path: data/chunk_67-*
- split: chunk_68
path: data/chunk_68-*
- split: chunk_69
path: data/chunk_69-*
- split: chunk_35
path: data/chunk_35-*
- split: chunk_70
path: data/chunk_70-*
- split: chunk_73
path: data/chunk_73-*
- split: chunk_74
path: data/chunk_74-*
- split: chunk_46
path: data/chunk_46-*
- split: chunk_75
path: data/chunk_75-*
- split: chunk_76
path: data/chunk_76-*
- split: chunk_77
path: data/chunk_77-*
- split: chunk_78
path: data/chunk_78-*
- split: chunk_79
path: data/chunk_79-*
- split: chunk_80
path: data/chunk_80-*
- split: chunk_81
path: data/chunk_81-*
- split: chunk_82
path: data/chunk_82-*
- split: chunk_47
path: data/chunk_47-*
- split: chunk_48
path: data/chunk_48-*
- split: chunk_49
path: data/chunk_49-*
- split: chunk_97
path: data/chunk_97-*
- split: chunk_96
path: data/chunk_96-*
- split: chunk_84
path: data/chunk_84-*
- split: chunk_95
path: data/chunk_95-*
- split: chunk_94
path: data/chunk_94-*
- split: chunk_93
path: data/chunk_93-*
- split: chunk_92
path: data/chunk_92-*
- split: chunk_91
path: data/chunk_91-*
- split: chunk_90
path: data/chunk_90-*
- split: chunk_85
path: data/chunk_85-*
- split: chunk_89
path: data/chunk_89-*
- split: chunk_83
path: data/chunk_83-*
- split: chunk_86
path: data/chunk_86-*
- split: chunk_98
path: data/chunk_98-*
- split: chunk_72
path: data/chunk_72-*
- split: chunk_45
path: data/chunk_45-*
- split: chunk_87
path: data/chunk_87-*
- split: chunk_88
path: data/chunk_88-*
- split: chunk_43
path: data/chunk_43-*
- split: chunk_71
path: data/chunk_71-*
- split: chunk_44
path: data/chunk_44-*
tags:
- wikidata
- wikimedia
---
# Dataset Card for Wikidata Multilingual JSON Formatted with Wikipedia Sitelinks
<!-- Provide a quick summary of the dataset. -->
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
Wikidata Multilingual JSON Formatted with Wikipedia Sitelinks
- **Curated by:** philippesaade
- **Funded by [optional]:** Wikimedia Deutschland
- **Shared by [optional]:** philippesaade, Wikimedia Deutschland
- **Language(s) (NLP):** All WD Languages
- **License:** CC0-1.0
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** wikidata.org
- **Paper [optional]:** None
- **Demo [optional]:** None
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
https://www.github.com/philippesaade-wmde/
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |