File size: 12,675 Bytes
8434d40 c66e4e5 8434d40 c66e4e5 8434d40 3b2dec7 8434d40 3b2dec7 8434d40 312df95 c66e4e5 8434d40 c66e4e5 312df95 c66e4e5 8434d40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import dataclasses
from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional, Tuple
import datasets
import pytorch_ie
from pytorch_ie.annotations import LabeledSpan, NaryRelation, Span
from pytorch_ie.core import Annotation, AnnotationList, Document, annotation_field
from pytorch_ie.documents import TextDocumentWithLabeledEntitiesAndLabeledPartitions
@dataclasses.dataclass(eq=True, frozen=True)
class SpanSet(Annotation):
spans: Tuple[Span, ...]
score: float = 1.0
def __post_init__(self) -> None:
# make the referenced spans unique, sort them and convert to tuples to make everything hashable
object.__setattr__(
self,
"spans",
tuple(sorted(set(s for s in self.spans), key=lambda s: (s.start, s.end))),
)
@dataclasses.dataclass(eq=True, frozen=True)
class Attribute(Annotation):
target_annotation: Annotation
label: str
value: Optional[str] = None
@dataclasses.dataclass(eq=True, frozen=True)
class Predicate(Span):
lemma: str
framenet_id: Optional[str] = None
@dataclasses.dataclass
class Conll2012OntonotesV5Document(Document):
tokens: List[str]
id: str
pos_tags: List[str]
sentences: AnnotationList[Span] = annotation_field(target="tokens")
parse_trees: AnnotationList[Attribute] = annotation_field(target="sentences")
speakers: AnnotationList[Attribute] = annotation_field(target="sentences")
parts: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
coref_mentions: AnnotationList[Span] = annotation_field(target="tokens")
coref_clusters: AnnotationList[SpanSet] = annotation_field(target="coref_mentions")
srl_arguments: AnnotationList[Span] = annotation_field(target="tokens")
srl_relations: AnnotationList[NaryRelation] = annotation_field(target="srl_arguments")
entities: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
predicates: AnnotationList[Predicate] = annotation_field(target="tokens")
word_senses: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
def bio2spans(bio: List[str], offset: int = 0) -> List[LabeledSpan]:
"""Convert a BIO-encoded sequence of labels to a list of labeled spans.
Args:
bio: a BIO-encoded sequence of labels, e.g. ["B-PER", "I-PER", "O", "B-LOC", "I-LOC"]
offset: offset to add to the start and end indices of the spans
Returns:
a list of labeled spans
"""
spans = []
prev_start_and_label: Optional[int, str] = None
for idx, bio_value_and_label in enumerate(bio):
bio_value = bio_value_and_label[0]
bio_label = bio_value_and_label[2:] if bio_value != "O" else None
if bio_value == "B":
if prev_start_and_label is not None:
prev_start, prev_label = prev_start_and_label
spans.append(
LabeledSpan(start=prev_start + offset, end=idx + offset, label=prev_label)
)
prev_start_and_label = (idx, bio_label)
elif bio_value == "I":
if prev_start_and_label is None:
raise ValueError(f"Invalid BIO encoding: {bio}")
elif bio_value == "O":
if prev_start_and_label is not None:
prev_start, prev_label = prev_start_and_label
spans.append(
LabeledSpan(start=prev_start + offset, end=idx + offset, label=prev_label)
)
prev_start_and_label = None
if prev_start_and_label is not None:
prev_start, prev_label = prev_start_and_label
spans.append(
LabeledSpan(start=prev_start + offset, end=len(bio) + offset, label=prev_label)
)
return spans
def example_to_document(
example: Dict[str, Any],
entities_int2str: Callable[[int], str],
pos_tags_int2str: Optional[Callable[[int], str]] = None,
) -> Conll2012OntonotesV5Document:
sentences = []
tokens = []
pos_tags = []
parse_trees = []
speakers = []
entities = []
predicates = []
coref_mentions = []
coref_clusters = []
srl_arguments = []
srl_relations = []
word_senses = []
parts = []
last_part_id_and_start: Optional[Tuple[int, int]] = None
for sentence_idx, sentence_dict in enumerate(example["sentences"]):
sentence_offset = len(tokens)
current_tokens = sentence_dict["words"]
current_sentence = Span(start=sentence_offset, end=sentence_offset + len(current_tokens))
sentences.append(current_sentence)
if pos_tags_int2str is not None:
pos_tags.extend(
[pos_tags_int2str(pos_tag_id) for pos_tag_id in sentence_dict["pos_tags"]]
)
else:
pos_tags.extend(sentence_dict["pos_tags"])
parse_trees.append(
Attribute(target_annotation=current_sentence, label=sentence_dict["parse_tree"])
)
speakers.append(
Attribute(target_annotation=current_sentence, label=sentence_dict["speaker"])
)
named_entities_bio = [
entities_int2str(entity_id) for entity_id in sentence_dict["named_entities"]
]
entities.extend(bio2spans(bio=named_entities_bio, offset=len(tokens)))
for idx, (predicate_lemma_value, predicate_framenet_id) in enumerate(
zip(sentence_dict["predicate_lemmas"], sentence_dict["predicate_framenet_ids"])
):
token_idx = sentence_offset + idx
if predicate_lemma_value is not None:
predicate = Predicate(
start=token_idx,
end=token_idx + 1,
lemma=predicate_lemma_value,
framenet_id=predicate_framenet_id,
)
predicates.append(predicate)
coref_clusters_dict = defaultdict(list)
for cluster_id, start, end in sentence_dict["coref_spans"]:
current_coref_mention = Span(
start=start + sentence_offset, end=end + 1 + sentence_offset
)
coref_mentions.append(current_coref_mention)
coref_clusters_dict[cluster_id].append(current_coref_mention)
current_coref_clusters = [
SpanSet(spans=tuple(spans)) for spans in coref_clusters_dict.values()
]
coref_clusters.extend(current_coref_clusters)
# handle srl_frames
for frame_dict in sentence_dict["srl_frames"]:
current_srl_arguments_with_roles = bio2spans(
bio=frame_dict["frames"], offset=sentence_offset
)
current_srl_arguments = [
Span(start=arg.start, end=arg.end) for arg in current_srl_arguments_with_roles
]
current_srl_roles = [arg.label for arg in current_srl_arguments_with_roles]
current_srl_relation = NaryRelation(
arguments=tuple(current_srl_arguments),
roles=tuple(current_srl_roles),
label="",
)
srl_arguments.extend(current_srl_arguments)
srl_relations.append(current_srl_relation)
# handle word senses
for idx, word_sense in enumerate(sentence_dict["word_senses"]):
token_idx = sentence_offset + idx
if word_sense is not None:
word_senses.append(
LabeledSpan(start=token_idx, end=token_idx + 1, label=str(int(word_sense)))
)
# handle parts
if last_part_id_and_start is not None:
last_part_id, last_start = last_part_id_and_start
if last_part_id != sentence_dict["part_id"]:
parts.append(
LabeledSpan(start=last_start, end=sentence_offset, label=str(last_part_id))
)
last_part_id_and_start = (sentence_dict["part_id"], sentence_offset)
else:
last_part_id_and_start = (sentence_dict["part_id"], sentence_offset)
tokens.extend(current_tokens)
if last_part_id_and_start is not None:
last_part_id, last_start = last_part_id_and_start
parts.append(LabeledSpan(start=last_start, end=len(tokens), label=str(last_part_id)))
doc = Conll2012OntonotesV5Document(
tokens=tokens,
id=example["document_id"],
pos_tags=pos_tags,
)
# add the annotations to the document
doc.sentences.extend(sentences)
doc.parse_trees.extend(parse_trees)
doc.speakers.extend(speakers)
doc.entities.extend(entities)
doc.predicates.extend(predicates)
doc.coref_mentions.extend(coref_mentions)
doc.coref_clusters.extend(coref_clusters)
doc.srl_arguments.extend(srl_arguments)
doc.srl_relations.extend(srl_relations)
doc.word_senses.extend(word_senses)
return doc
def convert_to_text_document_with_labeled_entities_and_labeled_partitions(
doc: Conll2012OntonotesV5Document,
token_separator: str = " ",
) -> TextDocumentWithLabeledEntitiesAndLabeledPartitions:
start = 0
token_offsets: List[Tuple[int, int]] = []
for token in doc.tokens:
end = start + len(token)
token_offsets.append((start, end))
# we add the separator after each token
start = end + len(token_separator)
text = token_separator.join([token for token in doc.tokens])
entity_map: Dict[Tuple[int, int], LabeledSpan] = {}
for entity in doc.entities:
char_start = token_offsets[entity.start][0]
char_end = token_offsets[entity.end - 1][1]
char_offset_entity = LabeledSpan(start=char_start, end=char_end, label=entity.label)
entity_map[(entity.start, entity.end)] = char_offset_entity
sentence_map: Dict[Tuple[int, int], LabeledSpan] = {}
for sentence in doc.sentences:
char_start = token_offsets[sentence.start][0]
char_end = token_offsets[sentence.end - 1][1]
char_offset_sentence = LabeledSpan(start=char_start, end=char_end, label="sentence")
sentence_map[(sentence.start, sentence.end)] = char_offset_sentence
new_doc = TextDocumentWithLabeledEntitiesAndLabeledPartitions(text=text, id=doc.id)
new_doc.entities.extend(entity_map.values())
new_doc.partitions.extend(sentence_map.values())
return new_doc
class Conll2012OntonotesV5Config(datasets.BuilderConfig):
"""BuilderConfig for the CoNLL formatted OntoNotes dataset."""
def __init__(self, language=None, conll_version=None, **kwargs):
"""BuilderConfig for the CoNLL formatted OntoNotes dataset.
Args:
language: string, one of the language {"english", "chinese", "arabic"} .
conll_version: string, "v4" or "v12". Note there is only English v12.
**kwargs: keyword arguments forwarded to super.
"""
assert language in ["english", "chinese", "arabic"]
assert conll_version in ["v4", "v12"]
if conll_version == "v12":
assert language == "english"
super(Conll2012OntonotesV5Config, self).__init__(
name=f"{language}_{conll_version}",
description=f"{conll_version} of CoNLL formatted OntoNotes dataset for {language}.",
version=datasets.Version("1.0.0"), # hf dataset script version
**kwargs,
)
self.language = language
self.conll_version = conll_version
class Conll2012Ontonotesv5(pytorch_ie.data.builder.GeneratorBasedBuilder):
DOCUMENT_TYPE = Conll2012OntonotesV5Document
DOCUMENT_CONVERTERS = {
TextDocumentWithLabeledEntitiesAndLabeledPartitions: convert_to_text_document_with_labeled_entities_and_labeled_partitions
}
BASE_DATASET_PATH = "DFKI-SLT/conll2012_ontonotesv5"
BUILDER_CONFIGS = [
Conll2012OntonotesV5Config(
language=lang,
conll_version="v4",
)
for lang in ["english", "chinese", "arabic"]
] + [
Conll2012OntonotesV5Config(
language="english",
conll_version="v12",
)
]
def _generate_document_kwargs(self, dataset):
pos_tags_feature = dataset.features["sentences"][0]["pos_tags"].feature
return dict(
entities_int2str=dataset.features["sentences"][0]["named_entities"].feature.int2str,
pos_tags_int2str=pos_tags_feature.int2str
if isinstance(pos_tags_feature, datasets.ClassLabel)
else None,
)
def _generate_document(self, example, entities_int2str, pos_tags_int2str):
return example_to_document(
example, entities_int2str=entities_int2str, pos_tags_int2str=pos_tags_int2str
)
|