File size: 5,288 Bytes
1ef2db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from dataclasses import dataclass
from typing import Any, Dict, Optional, Union

import datasets
from pie_modules.annotations import BinaryRelation, LabeledSpan
from pie_modules.documents import (
    AnnotationLayer,
    TextBasedDocument,
    TextDocumentWithLabeledSpansAndBinaryRelations,
    TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
    annotation_field,
)

from pie_datasets import GeneratorBasedBuilder


@dataclass
class DrugprotDocument(TextBasedDocument):
    title: Optional[str] = None
    abstract: Optional[str] = None
    entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
    relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities")


@dataclass
class DrugprotBigbioDocument(TextBasedDocument):
    passages: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
    entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
    relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities")


def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument:
    metadata = {"entity_ids": []}
    id2labeled_span: Dict[str, LabeledSpan] = {}

    document = DrugprotDocument(
        text=example["text"],
        title=example["title"],
        abstract=example["abstract"],
        id=example["document_id"],
        metadata=metadata,
    )
    for span in example["entities"]:
        labeled_span = LabeledSpan(
            start=span["offset"][0],
            end=span["offset"][1],
            label=span["type"],
        )
        document.entities.append(labeled_span)
        document.metadata["entity_ids"].append(span["id"])
        id2labeled_span[span["id"]] = labeled_span
    for relation in example["relations"]:
        document.relations.append(
            BinaryRelation(
                head=id2labeled_span[relation["arg1_id"]],
                tail=id2labeled_span[relation["arg2_id"]],
                label=relation["type"],
            )
        )
    return document


def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument:
    text = " ".join([" ".join(passage["text"]) for passage in example["passages"]])
    doc_id = example["document_id"]
    metadata = {"entity_ids": []}
    id2labeled_span: Dict[str, LabeledSpan] = {}

    document = DrugprotBigbioDocument(
        text=text,
        id=doc_id,
        metadata=metadata,
    )
    for passage in example["passages"]:
        document.passages.append(
            LabeledSpan(
                start=passage["offsets"][0][0],
                end=passage["offsets"][0][1],
                label=passage["type"],
            )
        )
    # We sort labels and relation to always have an deterministic order for testing purposes.
    for span in example["entities"]:
        labeled_span = LabeledSpan(
            start=span["offsets"][0][0],
            end=span["offsets"][0][1],
            label=span["type"],
        )
        document.entities.append(labeled_span)
        document.metadata["entity_ids"].append(span["id"])
        id2labeled_span[span["id"]] = labeled_span
    for relation in example["relations"]:
        document.relations.append(
            BinaryRelation(
                head=id2labeled_span[relation["arg1_id"]],
                tail=id2labeled_span[relation["arg2_id"]],
                label=relation["type"],
            )
        )
    return document


class Drugprot(GeneratorBasedBuilder):
    DOCUMENT_TYPES = {
        "drugprot_source": DrugprotDocument,
        "drugprot_bigbio_kb": DrugprotBigbioDocument,
    }

    BASE_DATASET_PATH = "bigbio/drugprot"
    BASE_DATASET_REVISION = "38ff03d68347aaf694e598c50cb164191f50f61c"

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="drugprot_source",
            version=datasets.Version("1.0.2"),
            description="DrugProt source version",
        ),
        datasets.BuilderConfig(
            name="drugprot_bigbio_kb",
            version=datasets.Version("1.0.0"),
            description="DrugProt BigBio version",
        ),
    ]

    @property
    def document_converters(self):
        if self.config.name == "drugprot_source":
            return {
                TextDocumentWithLabeledSpansAndBinaryRelations: {
                    "entities": "labeled_spans",
                    "relations": "binary_relations",
                }
            }
        elif self.config.name == "drugprot_bigbio_kb":
            return {
                TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: {
                    "passages": "labeled_partitions",
                    "entities": "labeled_spans",
                    "relations": "binary_relations",
                }
            }
        else:
            raise ValueError(f"Unknown dataset name: {self.config.name}")

    def _generate_document(
        self,
        example: Dict[str, Any],
    ) -> Union[DrugprotDocument, DrugprotBigbioDocument]:
        if self.config.name == "drugprot_source":
            return example2drugprot(example)
        elif self.config.name == "drugprot_bigbio_kb":
            return example2drugprot_bigbio(example)
        else:
            raise ValueError(f"Unknown dataset config name: {self.config.name}")