File size: 3,971 Bytes
524ffec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import dataclasses
from typing import Any

import datasets
from pytorch_ie import AnnotationLayer, annotation_field
from pytorch_ie.annotations import BinaryRelation, LabeledSpan, Span
from pytorch_ie.documents import (
    TextBasedDocument,
    TextDocumentWithLabeledSpansAndBinaryRelations,
)

from pie_datasets import ArrowBasedBuilder, GeneratorBasedBuilder


@dataclasses.dataclass(frozen=True)
class SpanWithIdAndName(Span):
    id: str
    name: str

    def resolve(self) -> Any:
        return self.id, self.name, super().resolve()


@dataclasses.dataclass
class TbgaDocument(TextBasedDocument):
    entities: AnnotationLayer[SpanWithIdAndName] = annotation_field(target="text")
    relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities")


def example_to_document(example) -> TbgaDocument:
    document = TbgaDocument(text=example["text"])
    head = SpanWithIdAndName(
        # this is due to the original dataset having an integer id but string is required
        id=str(example["h"]["id"]),
        name=example["h"]["name"],
        start=example["h"]["pos"][0],
        end=example["h"]["pos"][0] + example["h"]["pos"][1],  # end is start + length
    )
    tail = SpanWithIdAndName(
        id=example["t"]["id"],
        name=example["t"]["name"],
        start=example["t"]["pos"][0],
        end=example["t"]["pos"][0] + example["t"]["pos"][1],  # end is start + length
    )
    document.entities.extend([head, tail])

    relation = BinaryRelation(head=head, tail=tail, label=example["relation"])
    document.relations.append(relation)
    return document


def document_to_example(document):
    head = document.entities[0]
    tail = document.entities[1]
    return {
        "text": document.text,
        "relation": document.relations[0].label,
        "h": {"id": int(head.id), "name": head.name, "pos": [head.start, head.end - head.start]},
        "t": {"id": tail.id, "name": tail.name, "pos": [tail.start, tail.end - tail.start]},
    }


def convert_to_text_document_with_labeled_spans_and_binary_relations(
    document: TbgaDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
    text_document = TextDocumentWithLabeledSpansAndBinaryRelations(text=document.text)
    old2new_spans = {}
    ids = []
    names = []

    for entity in document.entities:  # in our case two entities (head and tail)
        # create LabeledSpan and append
        labeled_span = LabeledSpan(start=entity.start, end=entity.end, label="ENTITY")
        text_document.labeled_spans.append(labeled_span)

        # Map the original entity to the new labeled span
        old2new_spans[entity] = labeled_span

        ids.append(entity.id)
        names.append(entity.name)

    if len(document.relations) != 1:  # one relation between two entities
        raise ValueError(f"Expected exactly one relation, got {len(document.relations)}")
    old_rel = document.relations[0]

    # create BinaryRelation and append
    rel = BinaryRelation(
        head=old2new_spans[old_rel.head],
        tail=old2new_spans[old_rel.tail],
        label=old_rel.label,
    )
    text_document.binary_relations.append(rel)
    text_document.metadata["entity_ids"] = ids
    text_document.metadata["entity_names"] = names

    return text_document


class Tbga(ArrowBasedBuilder):
    DOCUMENT_TYPE = TbgaDocument
    BASE_DATASET_PATH = "DFKI-SLT/tbga"
    BASE_DATASET_REVISION = "78575b79aa1c6ff7712bfa0f0eb0e3d01d80e9bc"

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            version=datasets.Version("1.0.0"),
            description="TBGA dataset",
        )
    ]

    DOCUMENT_CONVERTERS = {
        TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
    }

    def _generate_document(self, example, **kwargs):
        return example_to_document(example)

    def _generate_example(self, document, **kwargs):
        return document_to_example(document)