{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Visualize the `turbulence_gravity_cooling` dataset" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import glob\n", "\n", "import h5py\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['data/train/turbulence_gravity_cooling_rho0_0.445_Z_0.1_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_0.445_Z_0.1_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_0.445_Z_0.1_T0_1000.hdf5', 'data/train/turbulence_gravity_cooling_rho0_0.445_Z_0_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_0.445_Z_0_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_0.445_Z_0_T0_1000.hdf5', 'data/train/turbulence_gravity_cooling_rho0_0.445_Z_1_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_0.445_Z_1_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_0.445_Z_1_T0_1000.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_0.1_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_0.1_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_0.1_T0_1000.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_0_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_0_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_0_T0_1000.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_1_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_1_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_4.45_Z_1_T0_1000.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_0.1_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_0.1_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_0.1_T0_1000.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_0_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_0_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_0_T0_1000.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_1_T0_10.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_1_T0_100.hdf5', 'data/train/turbulence_gravity_cooling_rho0_44.5_Z_1_T0_1000.hdf5']\n" ] } ], "source": [ "# print the list of paths of files in the training set\n", "set_path = \"train\"\n", "paths = sorted(glob.glob(f\"data/{set_path}/*.hdf5\"))\n", "print(paths)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "# select the last path\n", "p = paths[-1]\n", "\n", "# print the first layer of keys\n", "with h5py.File(p, \"r\") as f:\n", " print(f.keys())" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "print bc available: \n", "print attributes of the bc: \n", "get the bc type: OPEN\n" ] } ], "source": [ "# In 'boundary_conditions' is stored the information about the boundary conditions:\n", "with h5py.File(p, \"r\") as f:\n", " print(\"print bc available:\", f[\"boundary_conditions\"].keys())\n", " print(\"print attributes of the bc:\", f[\"boundary_conditions\"][\"x_open\"].attrs.keys())\n", " print(\"get the bc type:\", f[\"boundary_conditions\"][\"x_open\"].attrs[\"bc_type\"])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t0_fields: \n", "t1_fields: \n", "t2_fields: \n" ] } ], "source": [ "# Reminder: 't0_fields', 't1_fields', 't2_fields' are respectively scalar fields, vector fields and tensor fields\n", "# print the different fields available in the dataset\n", "with h5py.File(p, \"r\") as f:\n", " print(\"t0_fields:\", f[\"t0_fields\"].keys())\n", " print(\"t1_fields:\", f[\"t1_fields\"].keys())\n", " print(\"t2_fields:\", f[\"t2_fields\"].keys())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "shape of the selected t0_field: (50, 64, 64, 64)\n" ] } ], "source": [ "# The data is of shape (n_trajectories, n_timesteps, x, y)\n", "traj = 4 # as the data is large, we directly select a trajectory here\n", "# Get the first t0_field and save it as a numpy array\n", "with h5py.File(p, \"r\") as f:\n", " temperature = f[\"t0_fields\"][\"temperature\"][traj, :]# HDF5 datasets can be sliced like a numpy array\n", " print(\"shape of the selected t0_field: \", temperature.shape)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB78AAAIDCAYAAAB8RtqiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRl6Vnf+T77zEOcmHPOyqqsuUo1qDRLJQkkMUiYSYBQ65rJauwLBrdhIe6lwdAYVnsxti1j3LShbdS2uZjBWIANCBkJkEqzVKp5rszKOSMy5jOfvff9oyhZIuP320VkpqRA389a9UfFE/s5e7/7nd8TVUme53kAAAAAAAAAAAAAALCLlb7QNwAAAAAAAAAAAAAAwKXi8BsAAAAAAAAAAAAAsOtx+A0AAAAAAAAAAAAA2PU4/AYAAAAAAAAAAAAA7HocfgMAAAAAAAAAAAAAdj0OvwEAAAAAAAAAAAAAux6H3wAAAAAAAAAAAACAXY/DbwAAAAAAAAAAAADArsfhNwAAAAAAAAAAAABg1+PwG9hF7rnnnvjJn/zJWFtbu2w53/ve98YrX/nKaLVasbi4GN/1Xd8V58+fv2z5AQD4UnK5x+o//MM/jO/4ju+I22+/ParVaiRJYn//gQceiLe85S2xZ8+eqNfrcc0118Q//If/8LLcCwAAf1td7vH7x37sx+Kuu+6K+fn5aDQace2118Y/+Af/II4fP/45v3fixIl485vfHNdee2202+2YmZmJu+66K/7Vv/pXMZlMLsu9AADwt9WV2Ct/Tr/fjxtvvDGSJIlf+IVfuCj+2GOPxTd/8zfH3NxctFqtePnLXx6///u/f9nvA8DOcPgN7CL33HNP/NN/+k8v24D+53/+5/GmN70p9u3bF+9+97vjne98Z7z3ve+NN7zhDTEcDi/LZwAA8KXkco/Vv/d7vxcf/vCH49Zbb40777zT/u773ve+eNnLXhYbGxvxK7/yK/Ge97wnfvqnfzoajcZluRcAAP62utzj99raWrztbW+Ld73rXfHHf/zH8Y53vCP+8A//MF7+8pfHhQsXPvN73W43pqen48d//Mfj93//9+M3f/M349WvfnX8o3/0j+J7vud7Lsu9AADwt9XlHr8/24//+I9Ht9vdNnbs2LF45StfGY8++mj8yq/8Svz2b/927NmzJ77xG78xfvd3f/ey3wuAv7nKF/oGAHzh/PAP/3DceOON8Tu/8ztRqTzbHRw9ejTuvvvu+Lf/9t/G937v936B7xAAgC9tv/qrvxql0rPfV/3+7//++MQnPrHt7/V6vfi7f/fvxutf//r4gz/4g8/5C/Fv//Zv/7zcKwAAeNYv//Ivf86/f/mXf3kcPXo0vuZrvibe/e53x9vf/vaIiLj55pvjXe961+f87pve9KY4f/58vOtd74pf/uVfjnq9/nm7bwAAEPHRj340fumXfin+43/8j/GWt7zlovjP/MzPRK/Xiz/5kz+JQ4cORUTEG9/4xrj99tvjB3/wB+PNb37zZ9bxAL4waIHALvGTP/mT8cM//MMR8ewBdZIkkSRJvP/9799RvlOnTsXHPvax+PZv//bPHHxHRLzqVa+KG2+8MX7v937vctw2AABfMi73WB0Rz3vB/Nu//dtx5syZ+OEf/uHC/zQ6AAD4H67E+L2dPXv2RER8zvrb/W6pVIpyuXxZ7wEAgL8trtT4PRqN4u1vf3t83/d9X7zkJS/Z9nc++MEPxp133vmZg++IiHK5HG9605vixIkT8dGPfvSS7gHApeMvv4Fd4ru/+7tjZWUlfumXfin+83/+z3HgwIGIiLj11lsjy7LIsqwwR5Ikn1k8P/DAAxERcccdd1z0e3fccUd88IMfvIx3DwDA336Xe6z+m/iLv/iLiIhI0zRe/epXx0c/+tFot9vxxje+MX7xF38xDh48+DfOCQDAl4IrOX5PJpMYj8fxyCOPxA/8wA/EjTfeGN/0Td900e/leR5pmsbm5ma85z3viV//9V+PH/qhH3peB+UAAHwpulLj90/91E9Ft9uNn/7pn46lpaVtrxuNRjE/P3/Rz5/7r7Xcd9998YpXvOJv+kgALiP+8hvYJQ4fPhxHjhyJiIi77rorXvGKV8QrXvGKmJ6ejre//e1RrVYL/3nDG97wmXzP/X/Gthuo5+fnP+f/QwYAAIpd7rH6b+LUqVMREfHN3/zNcffdd8ef/MmfxM/8zM/En/7pn8aXfdmXRa/Xu2zPCQDA3yZXavw+e/ZsVKvVaLVa8aIXvSgmk0m8733vi6mpqYt+92d/9mejWq3G/Px8vO1tb4sf+IEfiH/2z/7ZFX92AAB2qysxft97773xcz/3c/Erv/Ir0W635Wffeuutcd9998XW1tbn/PwDH/hARAT76sAXAb5CCvwt8JM/+ZPx/d///YW/1+l0LvqZ+k+j8p9MBQDg8rmUsfr5eO5b7W9961vjZ3/2ZyMi4nWve13s378/vvEbvzF+4zd+I777u797R7kBAPhSdSnj9+LiYnzsYx+L4XAYDz/8cPzcz/1cvO51r4v3v//9n/nrtOd813d9V3zFV3xFrKysxJ/92Z/Fz//8z8f6+nr80i/90mV7FgAAvlTsZPyeTCbx9re/Pd761rfGV3/1V9vrvv/7vz/e/e53x3d8x3fEL/zCL0S73Y5/9a/+Vdxzzz0R8fz/92UArhwOv4G/BY4cORKHDx8u/L3PPtBeWFiIiO2/ibaysrLtX4QDAICd2clY/Tfx3Lj+1xfpX/3VXx1JksQnP/nJHeUFAOBL2aWM35VK5TP/r9C777473vjGN8bRo0fjZ37mZ+Kd73zn5/zu/v37Y//+/RER8VVf9VUxNzcXP/IjPxJvf/vb46677roMTwIAwJeOnYzf/+Jf/It46qmn4rd+67dibW0tIiI2NjYiImIwGMTa2lp0Op0ol8vxhje8If7dv/t38UM/9ENx3XXXRcSzfw3+0z/90/GjP/qjn/P/AgfwhcFXUIC/BXbyn3K57bbbIiLi/vvvvyjf/fff/5k4AAC4dFf6P3t+xx132DjfPAcA4G/uco7fhw8fjoMHD8Zjjz1W+Lsve9nLIiKe1+8CAIDPtZPx+4EHHoj19fW44YYbYm5uLubm5uLOO++MiIgf//Efj7m5uc/ZR//O7/zOOHv2bDz00EPx+OOPx4MPPhgRzx6ov+Y1r/n8PjCAi/CX38AuUq/XIyKi3+9/zs938p9yOXToULzsZS+L//Af/kO84x3viHK5HBERH/7wh+PRRx+NH/iBH7h8Nw4AwJeIyzlW/028+c1vjh/7sR+LP/qjP4o3v/nNn/n5H/3RH0We5/GKV7xiR3kBAPhS8PkYv5944ok4efJkfP3Xf33h777vfe+LiIjrr7++8HcBAPhSdTnH7x/5kR+J7/qu7/qc+NmzZ+Ntb3tbfM/3fE+89a1vvWhcrlQqccstt0RExPr6evybf/Nv4hu+4Rvi6quv3snjALiMOPwGdpHbb789IiLe+c53xnd+53dGtVqNm266Ka655pq45ppr/sb5fvZnfza+8iu/Mt7ylrfEP/yH/zDOnz8fP/IjPxK33XZb/L2/9/cu890DAPC33+Ueq48fPx4f+9jHIiLiySefjIiI3/md34mIiGuuueYz/znVm2++Ob7v+74v/vW//tfR6XTiTW96Uzz22GPxT/7JP4m77rorvvVbv/UyPB0AAH87Xc7x+7777osf/MEfjG/5lm+Ja6+9NkqlUtx///3xz//5P4+FhYV4xzve8Znf/d/+t/8tzp07F6997Wvj0KFDsba2Fn/8x38cv/qrvxpvectb4sUvfvHlfEwAAP5WuZzj98033xw333zz5/zs2LFjERFx3XXXxZd/+Zd/5ufnz5+PX/zFX4y77747Op1OPPLII/FzP/dzUSqV4pd/+Zcv5ZEAXCZJnuf5F/omADx/P/qjPxrvete74uzZs5FlWbzvfe/7nMH3b+pP//RP4yd+4ifi3nvvjVarFV/7tV8bP//zPx979+69fDcNAMCXkMs5Vv/6r/+6/ELad37nd8av//qvf+bf0zSNX/iFX4hf+7Vfi+PHj8fi4mJ84zd+Y/yzf/bPYnZ2dkefDwDAl4rLNX6fO3cu3vGOd8SHPvShOHPmTEwmkzh8+HB81Vd9Vfzoj/5oXHXVVZ/53T/4gz+If/kv/2Xcf//9ceHChWg0GnHrrbfGt33bt8X3fu/3RqXC36wAAOBc7r3yz3bs2LE4evRo/PzP//znfHltZWUl3va2t8WnPvWpWFtbiwMHDsQ3fMM3xE/8xE/E4uLiZflsAJeGw28AAAAAAAAAAAAAwK5X+kLfAAAAAAAAAAAAAAAAl4rDbwAAAAAAAAAAAADArsfhNwAAAAAAAAAAAABg1+PwGwAAAAAAAAAAAACw63H4DQAAAAAAAAAAAADY9Tj8BgAAAAAAAAAAAADsepWdXphlWZw+fTo6nU4kSXI57wkAgC85eZ7H5uZmHDx4MEqlK/fdNMZvAAAuH8ZvAAB2n8/X+B3BGA4AwOX0fMfwHR9+nz59Oq666qqdXg4AALZx4sSJOHz48BXLz/gNAMDlx/gNAMDuc6XH7wjGcAAAroSiMXzHh9+dTiciIt665wejVqpfFB9Mcnv99960JWN3fVcmY0nN3/L5312Vsa3exff5nN6oavM+tTklY1PlVMYWmwObt9MYyVgSugzPb7Vt3np5ImPrI10OH7rQtHnft7wuY2+/WpdRRMTXvfyYjCVlfV02tmmjca1+nmReP8/ooTWb96n75mTs/tUZGZur6bKPiLhxXtfR6WldX2rTup5FRDz5+IKM3b86LWPXTfVs3msW12SsNaPr76RvXmpErG/qd7PRr8nYKPV5nzRt45nezr/Ne92ULv9qSfdZ101v2rznui0ZOzXQdbuonr3y6tMylqa+HMZjXcajie6DT2/4fqlmyun6Qxf0dQV1/94H98vYx1f1Pe2r6/uJiLjWtI1qSd/TJPPlW0q279u7k1F8/cd+9TPj65XyXP5/c8c/ilb54jpWN+8pIqJsxib1bM+Ha0fOqX7Dxv+f4/o9fnzwbhkbjE4VfLL+xn65PCtjf2f67Tbr9TO6jXXMFGhQUHyZeTWNgq5xrqYvfs1+3Xb37PH9X8W0wclIl++pM7M2770XdHyS67ztii9EV4ZbE12Iw4J3szHW93R+oD80L2huN+ihP/YU9H/Owxt6jPjQyoaM3T9+r827NdBtrlnbK2Nf3vwmm/e6aT3H75n1ytbYF3CjrN/bdE3HpgpWX00zzWmW/T21Kzru6vdMxU+25xtDGSubvnsw9g/r5nTjXLepk309P4qIuHdVl/9y36wzC/4Sa19r+3saZcP4tVP/x+dt/L7/zd8cnerF9bra9O3arbdsf1I0vpgpaZbqMs0zX95F8SthNNCFtLTu17pne3pO74q36CkriX4BRXO2RkW/nLmWXne2mnqNFxGRlMzYZN6buy4iolLVz1MqGKOdjRW97twy661K2X9mzZTv/N6ujPU39Fo3IuJ/veeQjN0wo/vG/Q1fvj/82L+TsfFkxVzp12LFtVgpWDOV/NpSyTK/B/eti/9Yxmbr+ln+7dn/2+adpPqdF3WkSaLHy1pF7z398JHvsHn/3u3HZWxi5q5ZwX5B2bTHzgHdf1Tnfd50S+c9+ZCe2D66Omvzboj9jX46jB98+F9c8fE74n+M4c+8+8diuu3Xr39jualfbgETEZGZa0dmgB8VbNR2dTvMB2aMGRX0NxN9v/lYX5sPfd5sSz9P95juF/7iMf+liXvX9Dqk6FHdUmTVLP7Xxv7drOd6f+R8Sa/HBrlf27+89DIZK5fM2n7s8+am/5xO9NyrSDfX65vNRJ9ZLcVTPu/ovIxluZk3NK6zeQ9l18tYxYyna8mazXs2e0zGtoZnZKxa9mVfq+h+db58jb3WWRrr+x2bcTjN/Nx2nOp2kRTMV9yzDsZ6ftWs6XOciIg7a2+UsX98vR5HXrBH79FFRHTm+jKWmEcd9/x5zGDgz1aVSsV3hiWxB7I5HseL/ttvFY7hOz78fm5zoFaqb3v4nRYsbKbMJst0a+eH3/2qWUhUdKyU+QXIdgcEz2mblzRlNqEi/EZ2Yg4RuhW/6dMo6wo5yfS1jbKfhFUSs0g2ZRQRMV3TjcDM9aNo36PR0O8uaZpD1Lp/51OmvrhnbZmyj4jomDraMQv+esFh55SpE80d1t9n70nfb9sU4XjiyyEz5ZuZZxm6nbvwz+raRZGW+UKJO7SbqvgBdmuH7+1S6lla8J/0Goc5/DbDRrugX3KH3+5+i+q++1zXpzXNF5eezavjNXP4Pd7h4fdzrvR/Bu25/K1yfUeH3xVz/1+Iw++isaeS6HeVuJld4Uae2dw1eavbzJk+W72kx8qGO7iwWQsOvwu6xqbZ/HVj5bSbk0VEpWYOv035rhf0Na7vdIffrYJNbleGqTmoK2rTIzPRqbkDhoKX7t5rq6D/c+olPQ5UEr2JkBSM366cbJtKitqUrocTU75uzHo2ru+pbjZ4itqbixcdfru26up3u+LHLXdg7w6/y7lft1VNnXCH366NR/h34768VtRW66Wd1+HL4bn8nWp12/61avrUiIjE1B9/+O2fy0177OG3iUV8YQ6/h+YLGf2CscfNRy7l8NvNj4rmbM2Kfh637mwV7F1dqcPvqjv8NrEiuZuPTHSs6PC7XtWVf7qm97sqBfMjN1d0/ZAbAyIuZd678znxpVy30z616DpXvm788OVX9Lk7f1b3uUX7d26NPTF5s4L9Anf4PW2+NFut+3E0He9szVG0HhxnX9jx+7M/Y7rd2D2H31WzD1Mwd3QTi9yVt9l3iwh/+G32b3KzJxARkZkvI5erbv2483VI0daJGzLdfLZa0FdVzBeaSomeAJQKjpBc3+oOvyuJ3zN1h99F60DHPU3Z3FNRObg1r/sjR1f2EREV86zu8Luc+DlHyRzIuPGnaG3v8pYLntWx5WtjRWO4edaCw29fTm5892Xo3rnre9zYHxExXTPrYfOoI/OHchER1fTze/j9nKIx/Mr+T00AAAAAAAAAAAAAAPg84PAbAAAAAAAAAAAAALDrcfgNAAAAAAAAAAAAANj1OPwGAAAAAAAAAAAAAOx6+v8+/zzdMJ1Eo3zxGXrf/7/Ko1Mfyli+MtKxUWbzPnV+XsaOd5sydsf8ms376qOnZez08oyM/cmZOZv3lo5+1jfcdVzGyqd9OZzfnJKxfa2ejH3jVX2b98Yp/awv279kr908X5Oxe0/sk7H5ui6jiIhb0vMyVlvU9WzpMV0fIiLO9lr62lFZxm6fX7d5r3qVvqeo6O+jlGY6Nu81WysyNtMcyNjsrH/nzvqyL0Pn0As2ZezozYmMpSe3bN4/+PfTMna+r9tNf5LbvE9t6ndz17yuD/saut5HRKS5ftbTff2Zf3HOd98fXDoqYy+Y8R30N95+TMbKNV1fpqZ0PYuIGA31PVca+t00rqravFc9o+vSfettGUv9K4897a6M7TuoPzMd+e+V5dn273xj7Pu6y61RyqJRurjc62U/vpQTHXdPniQFBb5DR1q+3v3gjXUZO93/Lhn7/z712zbvRu8xGZtMVmXseLrs817QfdhG6PH7QFmPzxERdy3ovmifaX8REVebMl6c0+3EteuIiMRUmER3jXZMi4i4dkr3U8NU99dFJqa/njLj91C0+ecs1vS1Bxr62qIWNVvVfX29pK/up74PM48apdD3O1u72ubtDc/J2DjV9exCpttFRMRNia77szV9v2VXQSOiVdHX7m3o8p2u+DdXMX1lo+yvna1OZKxTHctYyVfRyM3HDid6bN8c+/F7nOkydvMjdz8REW3zbiZ13QcUzQsyEVc/v1JKlTxK1Ys/NCmoH5bppzJdrZ6Npzt/V05i+qkrpVrV49ZUwZq0NdR9Tc+0k6KndO2kSMVcOxzre6qbviQiomTmim78Lhe805Ip/9zUs9UVvW6PiOiPdF906IBeu08K5vSdw7pfdR3rO/7kiM07a5aP//iVT8hYteXnXfet/r9l7DfW3i1jtbJeT0VEHEhukbHVRO+jnVj/C5s3y3SbK5V0Ic1N3WrzfmL8uIw9sfJeGUtTvw9RKjVkrFLydbRc0uuVQ60Xy9i33XDK5q219Vww23J9t2+r47EeS1ef0XtEjWXTZiLi7JLeP314Ta91xgVz7bXx9m15YPqVKyZNn/3nryuajNmFk5uc+37BruDdPVUK1lRuwbDNGcLzuq7ApbxN96nta3S9fV120uY9elrX6dNmzzki4rEt3c89s6Xb9jNxxuY9l+t9jOX1B2WsbPq4iIjGwqtkbLqqS3hz7PPWS7quzZl5/big6ndSPQ9qmjXMoLTf5q3V9XlMNfSzXpPpPdyIiFqin/UT+T0yNpis2bwbvadkLMv0+cWw5M8DJlW9Z5PWdJuqFuR1koL1+05Vyr6OjiZ6fzjP9ZzaXRcRsVrX5zxLQz2XXN70fUt3oPuW0SXsl9Ur+lnd2qJcsAddvFry+MtvAAAAAAAAAAAAAMCux+E3AAAAAAAAAAAAAGDX4/AbAAAAAAAAAAAAALDrcfgNAAAAAAAAAAAAANj1OPwGAAAAAAAAAAAAAOx6HH4DAAAAAAAAAAAAAHY9Dr8BAAAAAAAAAAAAALte5VIT7G9k0SynF/18tjqx1+V5ImMP/F5Lxrrjqs374HpbxlbH+qz/FfWRzbv4Kn3t7JllGfvQH83avKvjsoydPDYjY1vDms27PKjL2JHqWMYmqf8+RLOcydhar2Gv/fNTe2XsRF+Xw6sWcpt3Y0k/6/rTTRm798KczXt9pytjt3Z0/T28b93mLR3q6GBPv5uo6TKKiEhN/Z5b1M9S8mnjyacXZGz/3KaM7X3Zxf3CZ0tapr40Tf0u67KPiPiyPX0bV1ZHvm95sqsL6lBT9x+dmnmnEXG6r8thpJtbdKq+HKZNEb7xupP22tlvu1rG8vO6fpfuuWDzbh3Xz3r+zJSM7Ut0PYuIOLGu29SFoS6n+Snft7TNey3X9bVrS74vLJe2f7GDsb+fy61WyqK+TZ9eTUzFi4hySd9nEjt/hkmm+zB/R16noucjUxU9Dbq+9hqb96mS7jOG4zUZ++TG/8/mzXNd70olXbfKJhYRcePM98jY4ebQXvuCA0syVm35vt7JzYvNTVWqVv1nHpjSY9441X15auamERFbI92x9iY6b83U7YiIPPTzZOaeyolvb1XR10REDEw5FDnS0nlf0NH98dnurM3brO+RsSzT7fh06WmbN83ukrE5NxUpmG+0K7r8F2u6jBpmLh0RUTIf2zDvNCJiX1PPgebaOrZh5iIREUsmvj7W/Wi/oJ4V1WGlV7Bemexw0KgVfC28JR614JVedkmSR7KDsnP9quuPs9S3BZc3Mn/tFxv7LAValZ315UX98ZWaHbp7GpkxLSKibMa1iimHct2P340FXRFHa/p+T2/odURExE0H9X7N9Ev12J40/fow2btfB4d6Dfi2e3o275rZ86qaMbistz4iIuIf3LgiY09/8o3+YuM2M5juaxySsd/JrrN5P7z+f8lYuTQtY9/Q/lqb9455XZd+Pj8rY2fW7rF5E/O3RdPNq+y1Lyu9Tsa+bJ8u37m9j9u8labuQXIzt5oMfB8wNuvWdz2k9xL+8KyugxERL5mZl7G9ZqoyKegoP7o02PbnY7PuumKy7Nl//rqijbmdSgomN25uWTH3lBasAcv62sTkzdOCSZXZi3CT6KRcUA41s8dR19fWZ/zZx8KG7u+HBeP/3FDPsd185UIct3nX+nrtlGV6vZBleo0dEfH0QO/bHUr1OF0vqPuvP6DLoV1x610/B92c6LwbZn0zu369zXtsvCpj06HPu65p61iE3wo/v/UCGXs8Pmjz5pnuB5NwZejbqtvjyM3CY6qkz44iIuYSHX8q/ZiMjcZ+XzlNdVtNJxv2WveszlT7Rhu/vXpExsZmHr9u9q0iIgaprt+pWbvVtjn//Wxls5dcq3zh1oT85TcAAAAAAAAAAAAAYNfj8BsAAAAAAAAAAAAAsOtx+A0AAAAAAAAAAAAA2PU4/AYAAAAAAAAAAAAA7HocfgMAAAAAAAAAAAAAdj0OvwEAAAAAAAAAAAAAu17lUhPM18bRKl98ht5Ny/a6pzc6MjbM9Jl8vZTZvDd3ejJWKbjWGT41kLFsrK+7e8+qzXth0JCxe5fnZezjK/7VDdJcxm6crstYraSvi4goJzo2Xa3Zaw81RzJ2sKmvu3X/ss3r3HthTsYe3fRleKI/I2Pr+lHikc2jNm9yn47VTfl/y23HfF7zVZZKTeddO28KPyLuW5uWsT3TXX0/U/67NZsf123q/if0e+ulB2zecqKf9UVHz+rr6r5/uPex/TL2xFZLxj55QdejiIjVsS6ntqmiR1q+rd7Y0e9m4TbTaUVE9uI7Zaz09HF93ftXbN4nV3VZTHLdufRGvm/5g1NT+jM3dWPd26javA+dXZSxs8d0P/pMz49/109tX/69dGivu9zKSRbl5OJ6Xy4cB3RbKZkxIvNprTTX7aQob8/MRx5Y17EbKntt3rn8q2Ts6erjMnZ+8JDN2x2ckLEs1XMcF4uI+NWl/yJjX3vgK+y1U/Nm0DPygmlXbtp9ZDpWrvjEjdpEXzvRFWac+nGrWdF5U3O/rl1EREzMtWHGtJKJFXEl6PrjiAgzxYyGmSiWw/e5iflObmImOZ1cz5cjIqbNEDJf0yXh5rwREQ2zrmiUdaxSkNfNY2Zrvi0emN+Qsc6ivnZ4zM+JH9vSc8ULQ/1Anaqvo62yjg9NuzjT94W4MtzZmu/6ad8HXN3avg/opemOPm+n8jzZtv/MC27D9cnpWJdpnvryzl0f9kUoM88zHut5gevnI/xeQ930CWlBnzs2eyNF40ulYE6nDEa+v3bqVT1W1hs6FhFRPaQ77NqL9f7Ryw6es3lH53U55CMzx1zV66mICDfjz4f6Wfe39ToiIuJqU4bVaf3Sk5qvEAcX9RjxQ7fofn62VrRG6cvIyZ5eJ79hccFmPZW8XsZuixfK2P6W78u7phq+IH+pjJ1JPmrz5mZ2dW3yEnvt11+l6/7Bhi5/twcUEZGY4b02bfqsWT+ODlb1B//q+U/J2LnhAzbvjaO/K2Ml87C/cvbf2ryV8vb1Oy8aOD+fiha1rsMpXcLftdlXbcqn7Pc8omLiFXO/k4JnycwNu0GxaMDcIVG1PmN6Vu97nt3Q+1gREeeGugzd3v2e1O9J9+trMjZJt2Qsy/x+w4e2fl3Gbp7+Ohmby/xYcMOUHjM7Vb23OSg4l1oa6n63a+rhNW1fR4eZ3kd0BgXd0emersOHynoP/Uyyz+bdqpyWsZIZRPKCzZ5quS1jc9WrZezO5Fab141768m1MjaqbNq8o7E+e8rDz1+dUkm3869tfa299gVz+mHP6q4lstx3TAfMfLxj5qDNxJdDraIrcdXFqr7ylyvb93cVP4B9Bn/5DQAAAAAAAAAAAADY9Tj8BgAAAAAAAAAAAADsehx+AwAAAAAAAAAAAAB2PQ6/AQAAAAAAAAAAAAC7HoffAAAAAAAAAAAAAIBdj8NvAAAAAAAAAAAAAMCuV7nUBHcePhedau2in//eI0fsdeeHVRm7fWYkY9PVsc272OrL2OFr12Rs83zd5v3YJw/K2Gxd32+nMbR5B5OyjD3VbcnYYxs+b7uiX+0k1995uL2jyy8i4sBUV8YWZnUsIuL08oyMHduckrHljbbN+4y59oF1XQ4zF1fbz7GmX2tsjHIZa1cSm3eiL439DR08t9SxedcGug4PUl3POgVt6kRPX/vbTxySsb0nMpv34Q2dd9WU722zNm183dFTMtaYm8jYuOe/C7Sv3ZOx9bHuz84NdCwi4nBT31O1pMuha/qOiIjj3aaM3XC/r/wHPvhxGctOrshYfa9NG0dPr8tYyTSbcerfzZG2Lqf5un7Wa1oDm3fNvNeVkb6nasHXylpl1TZ8m7ncykke5eTisquW/H2Uk53epy+YZJt7eU5mPjLNfZ/bM23lfF8nXhr78fDR5F4Z609WZWw02bR5yyU99qeZ7oeKbA5Oyth/PaPH0YiI267TZVyu6PeWF7wby/R/ZROLiKhWdb+am0vTzN9v2bSNiom5+hsRkSW6bWSmDIvqvrvWvZte6vM+uaXv90wvlbHl7CmbdzDW7aZe1XPIl7f8muNIS9/TkZaeTxf1dUMzt3I1tKhV1Mv6fmfrfv5fb+hrxwP9yZtDvw462dPXPmwmzEem/HxjrqbzbpnpaS/1fcBsXdfRjpmWHW3rviMiYo9Y83UnZtFwBeTZs/9s93MnM207NzF33bOfu7O+PinoyxOT1vXlRfczHuv6MR7rdu361Ag/Rri5VdmMARERqZkfXQo3hvTMHDgiYpzpe26nuvFWK7qPioiYOqfnXrWD0zrvq6+xebu/cUzG7n33vIy995xff3/79WdlbH6PXmc0av6dd6Z0X+/aecn0fRERjTn9bm6dLMlYUVt1fYQbKxfMOi0i4n/e8woZu8aM7ctmLyEi4njX1P3QZb/Yud3mvT15tYw1Et+mzg70u2uU9J7W8hm/V7b3yJaMVTqmTytYzy4/qtcOT6/9jozluR8v/93Z/91E3U0VrF/L27fl3A0mn29uQ+QLpeTK3PfnUTH7VVVdp5OJf5d56uImlhW8axNPzLsptXxjaR3U93R9esFe+5ELetw70NZl2NvYZ/P2qzfKWHVK7yOu9Z+2edNMj3unx/fL2KB61ObdmNwqY3PmPKaV+Hn9olmVXdXS17Zrfg99ZPafNsZ63Fsd+SO6ihlHxrnO2+jrsTQi4pOdORlbmfj1uzNd0ecFN2Q3ydiCqdsREWf7+p3P5Asy1q9fY/O6vYh0smGvrVUXZezv7f37MlYv+37/k8u6Hs7VdT2rFKwtZsym9UJd9+3TBWecnbaZ+5o2Va75fl89TnVUMA79Ff7yGwAAAAAAAAAAAACw63H4DQAAAAAAAAAAAADY9Tj8BgAAAAAAAAAAAADsehx+AwAAAAAAAAAAAAB2PQ6/AQAAAAAAAAAAAAC7HoffAAAAAAAAAAAAAIBdj8NvAAAAAAAAAAAAAMCuV7nUBAsvLcV04+Iz9KMnhva6zUlTxpaG+rbqpczm3Vfqylhtrz7rnyn7+y2d07FRWpaxcsH9zrf6MvaSuZqMHW1Xbd59Df08jXIqYwemN23ehX26fJOCr1J8+rEZGTvZ12XYT/V1EREfX9H15cnNkYx98xH9mRERr9u7JWP1ykTG8jyxeU93WzL2Vf/TeX1h1d/ve/59R8bODnR9+eprL9i831TVz3pqqy1jD202bN7jW7oe3jKrn/UrDprGGBGHvlG3m3xVt8f+x/VzRkSkma7gHVMfRjXfMIapry9Kv+C6Qabjj5+ft9eu/JJu509u7JGxl111xuZdNG0qn+hyuv/4Xpu3Vspl7Nq2rmdD804jInrmnq5qjWXM9b8REe3q9tduTfx1l1utnEW9fHGbcP1bREQpdHlnYeqlfhWfySzzmn61qAVNVfQHtyq6r8nMc0ZErA+fkbE00+8yKfje4dHp18tYI9d97mPdP7V5nd9c+6iNv/3c1TK276CfN+xUYl5suernVk6W6mtHE//OnYrphyY7v90YmX5qUNCHORMzRqyMfN4HVwcydiqWZWyU6rElIiLNdN4s03V/uuZ7gb113V/P1XVbLZrDjya6/xiYtUHRPNHpT/z8/9ySnguOTX15YlOXb0TEmZ4ui2cy/c7zzUWbt9vQc/hpM3+6ZsqX4ZzpI6qmrXbMeBERUU62v1b9/ItNbqp0ZuaVLhbhx+iSKZuilpDvsFhT079FRGSprltuvn8pbfdSpOZz04J3k5jtnq2xjnUnfptoaMq4NdL91NiUfURE6VH90qeWdF+Tjf169t0PHJWxe1d1f/2KBT8nPvpmE2zMyVD9Y/5+N8/q9Wz/rC7D+tDf73Bdv9fxeOfj1tiMh/1Uf+ZizY+znYr+3Os7PRnbb+p2RMS5gd6LdPP/b5x6o837QrPEvjD0Zei6u7Ep/5Nr0zbv7IIup1JDl//Zx6Zs3u/5sJ435LnegyvmSkKP0a6vi4iYahza/tPyNDZ6a8/jvi6jSvnZf/66og3V0g7n/VnBQsRODi5hEeO4Z6kUPKfZo4mSbit5VjCpcI9qPjKpFozDph+busrPO19+akPGstBtv1H2e7GTlWtkbCPZJ2MXpq6yeVfT4zau1EPvkUdE/Pezun2/Yb++do9Z50X4deB8W/edbp8iIqI31PMgN6cbFsyRmmVdh4+YpdyNHZ/3pdktMvb0lo6VCwrCtbi1oRl/+n4M+XD6ZzI2SvWec2+4ZPNmmf7ccsWPtXOt621cOWbOrCIitsw91cp6LlNK/PlRzexzdGp672RmWp9hRkS05/S15bZZE5YLGpXov6vPcwudv/wGAAAAAAAAAAAAAOx6HH4DAAAAAAAAAAAAAHY9Dr8BAAAAAAAAAAAAALseh98AAAAAAAAAAAAAgF2Pw28AAAAAAAAAAAAAwK7H4TcAAAAAAAAAAAAAYNerXGqC/uPDqNbyi35+y54Ve12tNCtj3Ym+rZddc8bmnf/qtowle4/IWPb+4zZvZmKDSVnGhmNfxOXSxWX3nBcf1c/aPpTavJ/+6F4Z+8TqtIyNs8TmXTzQlbHavL00WhVdig+u6utWhr4Mn9wcyVgp9PNc1erbvHd9jb6ppKHf+ft+c8Hm/bUn9LX5b+r39uUvecbmLSX6BSTmta5stGzea2/WbXnx/JaMbTx9yObtzlZl7OqWrt8j094iIibH1mQsH+j29p8fvM7mvW9NF+KX7x3L2I0zGzbvI2u6PfZS/f2kl+8xjSYiFqZ6MvbhU/vstW9/+HEZuzB6QsZ+ovstNu9bbzgpY/XGRMZaFd/fdVP9bjbNeHK0rd9bRMTB5nBH9zRd09dFRGyOatv+vD/xz3m51SuTqFcubk+18s7vI810nTWvKSIixubakYmVE92uIyLWx7rPcGP7vqrvG8uT7d9jRMRgrNvnXMv3NdflOr6V67o107za5t1Tvl7GXlw7aq/95JIuqa/eo8eBUtW/GyexX8/0ecvmzVYyXb9LIz0uRUSUzOeWE1eb/Ljl+qkzA31PaUHxlk2bc8/S1d1xREQ8E3p+emLyKZ13cNbmzXP9wfXqjIxN+9cWczU9T2xW9TiQ577TSku6ktZNHXR9XUTE0Iz95/oNe+2jG1Mydn6o8z66btPG6lCX0yDRa4NjuR9nr63pfutFc7qtzlZ9Ja2VdPmXzJhRKhincrGuUD+/UpLS9n2k7zcjsrH+hclEx/KC9aFV1uVdlDcx62R3bVHezLTtonbvuGsn5p7Sgs8cmj7D9RcREasjPb6MzD25Nciz96RjVXPpuaHvsI919V5OnNIhV74RERUTvnZK17PFuh4/IiLyvu7jSof1nkD9Wt1vRkScfVKX01NndRl1n/T7Jm6+MWvGw0bB2mBi6qirg82CvNNmHrm/o+efj1yYs3lPbunPnYQeXx7u+sHy9jk9V5nfZs/0sz25pSvpbFXHxvnO/55ptGbGhII+oGz+jqpU0muoLNN7FJck8XU/SfxcfFdIzdxnZGKXsseQu/VNgWyH15b9u0pMW8pT/ZlJwZ5SPjbxiq7vSdHk0Si3fb2969XnZax6j35Wd84QEfF1B/UY8+dLeuw61fOb/n/RrcvYZr4kY61cr18iItZG+lk/vqKf5aqWL987Z/U4MmvmZkX7TzVT19pmrN0c+zmS+9Tpio5WC+pDy4SnZnU5uPVWRETXrC0+PdF5Hwm9Hx0RsdrV8TTV7zQv2ENyu4Olkt77i4jojs/J2Ht698pYM/R5QETEntgjY5l5nKJ33nH72c2BjLVm/Nq+OqtjpdbOx+F8sv3zlNyG12f/3o4/GQAAAAAAAAAAAACALxIcfgMAAAAAAAAAAAAAdj0OvwEAAAAAAAAAAAAAux6H3wAAAAAAAAAAAACAXY/DbwAAAAAAAAAAAADArsfhNwAAAAAAAAAAAABg16tcaoITx+ZiqlK76Oc3/52eve7gZFnGJmeGMlZ/4/U2b/bqV+jgsv7M/E+P+bx5ImPt6ljGxmnZ5u2P9fcP5hJdhrVbZ2zexQf7Ou9WW8ama/pZIiK6qxe/6+eMuqm9tlOZyFilVNefOclt3q85pKvxVCXT92PeW0REtq7j3Qf1szzdbdi8T2YnZOz/87jO+2Pja23e1151RsZqS/Mydqqr60NExP7lTRl78uyCjL3/nO9e2lUdO9nX7eaDj+rPjIi49ZyOX9/WfcvvPjOweS8k6zL2gpl9MnY09d8xWh7pchqYJnXN1Ss2b7mu2817Pm4KPyKeXvsTGdvTuUvGUtNPRkT89+MHZayc6Pt96d4LNu9L5nR9uW9d1+/X3aDbYkREYh7nzx67Ssa2xr7u18vbv9hR9vn9Plo52b7cS+ZdFMnNtXlB2oEZL9fH7h378n7P6kkZW0vOylgn931Nkuh7Kid6rDxUut3m3cp1P7VSWpKxVvj7fWH1Ghl7yaJvu1MV3RmtrrRkbHZWz0UiIkpVPUYnpjm42LN0ZSuXdCwrqKNprj/Yxc4PdX2IiPiEmVttjvVNtSv+vTmTTF/7kbU1e+2x8YdlbDjWY2WRcknXpb2VG2Ws4afaO+7T3Nw/orhPUxJTPyMi8tCfu1YwvjyxpQvjZFe3t4d6qzbvqul7lidPyFijPGfzHp06ImO3zmzI2LhgvByZ8USXgm/HERFDMaf7fI/fSZJHsk29zvQyIiIihgNTLma+mph+87n7kXlNOyoVtIUw/ZRrfzttmxH+WVwswj+rmyMX1WdV7yIiNib+2pWRjvfNOmPiGkpEpK78zXXNsu+wGybeKuvMTROLiOinuvw3Jzr20EbT5r3xvbp8D9f13tOoYN356aX9MjY27WJz4sv3mZ6+3/Y2e3rPmar48m2W3J6LjrXFmug5bn34yAU9vvzPj95j82a53ud5aenLZGwl79q8I9Nu/u4tz9hrN7t6P2xoxn63Xo2I2FjxdVjZGur7iYj4zqM6fvT8D8nYr539RZs3y9w+shlPSn6uPVXZfr8myyex85nrDp1fi2j58t3WUNfb3MSi7MeJpGH2hlyfXSqofKUdzo2K8lZNezCXFU0N7KeOfV9l87ryr/gyKs3pveXbQo8xT33cnxe4eXLN3FLR/GohW5SxZqLXeQcSvV8dEXG4re93wTQlN4ZERGyMdd2fHeg+pd0Y2bxlMya6a+cLzo/WzVjgmk1RS3RHLm7+2ir7yWK9pJ+nbvqWRu7PKFx/n2a6jColf1YzSfVokGX+nQ9Gei29Vtb7zpWKP+Msm7c3MZtXF4a+H3VrV7dfVmn7NlVq6feaVC9hvZxsX9cSM7//bPzlNwAAAAAAAAAAAABg1+PwGwAAAAAAAAAAAACw63H4DQAAAAAAAAAAAADY9Tj8BgAAAAAAAAAAAADsehx+AwAAAAAAAAAAAAB2PQ6/AQAAAAAAAAAAAAC7HoffAAAAAAAAAAAAAIBdr3KpCRZmt6JTrV308/6jI3tdqapj9WsaOtjt27z5O/+TjI0vTGTskfv2+LyRyFijovMe35yyeZeHuiDuX52Rsb1P+fKtlHIZe8HcuoxN1X3ec6sdGVvqm/cWEXubAxn7nhvGMrY6urh+fbbDU10Zq5YyGeuPffU/e39LxroDf0/Oq6aOyNj5vq5LjbJ+loiI2YO6bRwabMnY+8/4ut86qeOPbekyWh6kNm9EWUbGmW5vf9D9gM16vv8KGRvtq8vY6w/oz4yIaJabMnZTpydj6wX19/xAf+7ehm7HTz696POa9jjKdN6IiLct/rCMfee1uo842F62ef/TcX3PT23o+lJOFmze1159WsayXJfv0gXfP+fm2pWRrr8HTV8XEXHDge3LaXPs+9/LbTgpRXWbdpia546IKIWuP2muv1PXHZuBPyLWTZ/8VFfHfnft0zbv6f4nZGw4XpOxSln3bxERpUTfU5LoclhLztq8p7IlGev1dRuba1xr83aq+p4ONPTYExExb+YGZ808p2fmOBERCzN6/K43dJ9QqvrxMDdd3HCg31uvoL/umTp6fqD73Ac3fN7H1vUcqJvqd9Mp+/LdmOj39mDyKRlbHT5l86bZUMZsuyj579zWKnqOuZDtlbGi6UZvou+pNtZ1aZT6+3X9XWL6ySLu2nLi83aqOt42fcAw0e80IuLM6H597VivK4aVTZv3ZO9uGUvMUNSd+Lrfm+gx2vUebv757Odun7ef+j7pcktKz/7z1417+rkjIiamXEoFdcvejy+2HV+XmPVsnu7wQwskl1AObuwZZ7r9jUwsImJg6uXmxJfDmpladic7f9Z0h5cWtTF3vz0zVblQMBB0Uz3Ots1YWiv7d/OBc/tkrPkxfe25gd7niYi4e6+eN7QquvCP6SV/RESsDnU5zdX1/Xaq/r3tb+hrZ2v6M88OfF8+NPXl73/XSRn7u7/0epv3nSf/pYwdm75exvblei4SEXFrR4+lCy/0dXTq1IaMrZxq22udiZnLbA703sja0M9d3f5os6Jj+6dfYvOe33pAxiYTPd9ICv6uKxejv/r5lbT1x6eiVLu4fM3y8dl42cwP9VZVVBZ8OyvN6XoQUzqW1H3eqJk5SdnECtYL9lVXdN6kWnD80TbPOtH1JB/5dbSdHBTJdlY/33/G7xU+sakL8c/Xz8hYNff9QtUcMe2NORm7cdrUwYi4saPLoWnaRaVgTtc3/aPbu6pVfH9eLYgrRfPiuZquaxMzXhbVQLdn6tYHbXMW9mxcl+/di/qdH2kftXk/eeHvy1h3ou/pI+n7bd6lDb1vWLQ3ONO8WsbaZX2mUgnfj26FPucpjc043PP96GN13Zb3NPT+3lxXn31ERJRndH25pJVbSVytfv7Xf+1SPhsAAAAAAAAAAAAAgC8GHH4DAAAAAAAAAAAAAHY9Dr8BAAAAAAAAAAAAALseh98AAAAAAAAAAAAAgF2Pw28AAAAAAAAAAAAAwK7H4TcAAAAAAAAAAAAAYNerXHKCShaVSnbRz+994IC97tygLmNfPT4mY7ULp23e//hfr5WxB9fLMnbxE3yuW6b1b0yyRMaO9fRzRkScG+hrs1xfd89yw+Y90NR5b53e+WtPc523U0nttYudroxNTQ9l7IkTizbv+V5Txva3ejI2THV9iIj42Jk9MuaetZvqMoqI2G/ezWv26Ni1nU2bt1TTsbkZXQ7t8772/9aJtoxNV/X93jCz8+/W9Cc69jWtV9tr/87BsYztaWzt9JZia6zbzZ5mX8YO7N2weTvVeRmbb+u8lbJ/b2dMu3jpoq+jX3dU97OHf/CIjA3/4ITNu+fsgoxtNHV7HGS+bzm2PCdja+OqjC1d0NdFRBxuDWTs6pbus5IwnXdEHDu3/TvfmuicV8LGqBZpdnHHUUr8/Y8z3bY3J7qdDFLfJwxM31k1l3ZyXa8iIobjFRtXJqnvL0qJ7nRnW3ousi+72uZ9KpZkbJzqcXRz7OdHzYou36I6OzbznMzMC57a7Ni8p7t6fLmqo8u/3RjZvIORrodbQzNYXoKxKYeuGdMiIgap7uPWcz1+n099n3EueVLGNkYn/U0ZzZqel7Ureu40ney1ea8LPb7cMqvn0/safjx0fdbGSI8Rrm4XqZh+tFLy9+v64EbB2N+p6Gedrennmc6nbN52Vb/XwWhVxiapnsdERPxf539bxv5k9WUy9sq2risREbeb4X2xphtkuWD8e3xr+7nK0NSxz6fx2N9H2dSfUkk/e2JiEb7Olis6VqoWrcCNkXnWgj7Xcc9SND9Kc31PA7Pu7BXMj1y8N/H91MBMoUcm5p80YmI2Kia5jq0XTHXPjXSf8WjyaRlbHTzlExvVip6LzFZ9X1OLloxtDc/L2MbolM374dN6rpLnut3M16+zeWfz/TqvqRCHY5/NW1vUe1NvOKDXwhsFc7Kvufe9Mvbq//ZaGbt3zc/hyyV9v2u5nk/3S35d/1vP3CljL/yU33ta39Lj8IfP67XOV17t5/9THd3ots7p8u8X7JW5tcMh3SziTWP93iIizievlLE/2vxVe62TiL/7Uj+/kj7y0KFoV/w+8Xb2NvXexIF5XTdnCtYLFdOfl1IzTnf8GJ6Eeca6KXezZn02bupmyVxb9nvoO5WMCyYd63r9HhO/zxWhn7U0o9cwj2z4ev3eTb1GXM71eHogucXmrefTMjZb1fe7T29dRkREs1w0K9neyOxhRPh+7qTZTy1aI7Zrek86N9f2zV5aREQ50W0uMXU/D3+/mZm31c26tVXZ+YS7UdZ1/0DT19/Zqh5kNiZ6XHvorJ4DRUQsm7lBo+r3jltlPU6XTDuu5n4eNEx0/93PdZvqjv0Ys27ON84NdDkcPO8b62Jb713FjA4l5R3uu7iD08/yxbFSBwAAAAAAAAAAAADgEnD4DQAAAAAAAAAAAADY9Tj8BgAAAAAAAAAAAADsehx+AwAAAAAAAAAAAAB2PQ6/AQAAAAAAAAAAAAC7HoffAAAAAAAAAAAAAIBdr3KpCdbWW5FWahf9fHNctdct1kcylg71mfxkM7N5Xzi/YaLTMnJuWLZ501zHOtWxjL12b9fm/djynIydGeh72t9MbN4bpiYydtOMLqNjmx2bd2Wk7+krX3DcXjv7LYd1MNMFfMt/O2nzPvzoXhmrlHV9mWT+ux8fW7m4Xj+nai69tp3avPvr+lnna7oujVN/v7lpGjM363t66foFm/e/nVqUsTM9/aHffMTX0avbfZ23X5exlnmnERF3v+CEjI26usvb2GzYvJ86vyBj/Ynu7+Ze17J5p8/o8h+e0e/t3HHdn0VEnOzr+nugoetZRMTcfv1u8kdP2Wudt9z0jIydXdXPs9T372ZpoOvLvsZQxtqm746IOLRnXcaWV9sydt8F3a9HRDyxtX19GaQDe93ltpVWItvBNGBg+qLNiR4jyokZSCOibLoMFzuV3W/zevpZSiXdhiIi9k7dJmPX53fJ2OHalM17aqzbQpbrsX041vU1IuKetSUZq5X22Gtfu0f3u66nXxn5+nXWzHM+vtqUsYNNP84ebOg5ppuz1cs+b6Wk63DV1O+pgma2v6nr2vmefq/n42mbd2t8VsYqJV2+B+ovsHk72ayMNXPdH++v6n4zIuL6aV0fjrR0HTzU1O87wr+3sZkLZrmfx5TMO3exIrWSftZORfcBEb4ediq6fAepn1MMV27Xnzml5zmTXI/BERG9iZ4DnckekbFPb/l+9FuP6HnDtfNrMjYc+8Z6brj9mqPvFopXwNr5VqTVi/uNNPN1tmnmf/WmqVumDRWpmrZb8tsFEWbKP9zUscSsVyN8+8wTX4bO0MyPejuMRUT0zdC04aeysTHSheiqbamgGEbm4vWxvqkzsWLznsg/rfP29F7DJO3ZvK4y9Ue6/PvlZZu1Wdfr5DTT/d9gvGrzpvZ59LP0huds3gt1Pd9z84Jy5WU2bz89KGNNs79xasvPCwYjXV/+yaf0uHWi9ITNO8l0+fZT/W6Ssm+rv9/9Qxl75s9eZ6+9P/+AjL0o+TIZe/1V/p6a+3TfXlvWnUtRT9iq6Hp4lRlPGmXfP581+0Cb2XfI2Ae6/4/Nm8X29TALP6+6Ei6MatFLLx7De6kv9V6qy86NaxXzriIiWpluo1XT1xf+JZ1510nN1wPLDVBVM7GoFSzIyjs8HkkvoQ4VDLb54ry+9BZ93S+2H7B5X/Hjeu5eSfQcOg+/Vi6bWuG6TzfPiYg4b86IUrNeK1qPuWtXxjvb84qIWKzpOtE2a7lKwf3aNmev9XkT0+M3zf3OmT39iIhaRb/YWt2MTQVnKsOHD8nYOx/Vz7I8fszmrVX0vOLG2mvttdVM7+fMJXquUyv5nnTZzAdzNx8s6JcGqe7v3H7vetfvzXfW9J52o2rGE59WVv7cnCU+j8sBAAAAAAAAAAAAANg9OPwGAAAAAAAAAAAAAOx6HH4DAAAAAAAAAAAAAHY9Dr8BAAAAAAAAAAAAALseh98AAAAAAAAAAAAAgF2Pw28AAAAAAAAAAAAAwK7H4TcAAAAAAAAAAAAAYNerXGqCJ1dnolWuX/TzQebP1XvDmoy9/4EjMvbCfUs270236vjhpTUZO3Nh2uYdTnRRLbR7MjY3r2MREae6bRlbGjVlrJ7kNu90dSJjCzNdGWvVxzbvcKzLYfbNB+y12Ze9QsZKf/lRfZ1+lIiI2D+zKWPlciZjdVNGERHzK1MyNkz1ddNVE4yIqYqOLw2rMnasd3E7+2ztR/S7W5zb0nnXfd3f0yzL2ELdxGp9m/eGA8sy1l6ekbGeqYMREZWmbhuNw7rs66d1GUVEVJfnZaxTH8pY3vdtKuvrOnrmmH43T6zO2rzrY90Ht8r6vUVE3P/wPhm7eXBexsqVxOZtTOmyuLqxKmPXlHx/NxnpZ03MLQ0Hvi61FvX91rd0/3Gy7/M+tLZ9PRxnui5cCSd71WiWLx6LG2Vf3k5mLs1yXz/q5j27e+qNdF8SEVEqNWSsVu7IWJLs/PuBzdB9ea3sy+HG0R0ytlJ+Qsby8GPPmeRJGbt/VZdDRMSRth5/SqHfzZNbvgxXh7rON01/Ml/zZdhNdR9XMfUsD593mOrnWR7pdj8paFIl01GNkoGMZeHHl6nqfhmbSXTs9vJRmzcp6OuVAy0/9uxt6IKar+k+t10pmCgaWb7zdu76NBcrqmeJaVMtM4eMiOhUdZ04ZObECzXdT0ZEpNmCjC0N5mSsXfXPeu/mioxtlNZkbCZv2bx7mnqtM9XRc7bETwW/aDxxYTbaFb8u2M7R2Q0Za07rulNt+flJydxK5YAOJjXf/vKebtvJeX2/+cS3k7EZB0qpftY08/W5XLA+l/dTMP3rTvTnboz8Z26Z5JnpaypuAh1+vjfKdflvmXYdETGY6HiWjey1Trnk+wz5mbkfX/pDPQcdjXUsN2X/V58sI0nosTTLfRkNRnq91TTtcStZs3mH6UEZ+y/H9HxjkPp69g/2f7eMPbyu+/mZ0GNWRES7rvetXlr6Chm7fkrvz0VEvL/7lIx9uPef7bVppsempfaauc6XoavCuZmrVEs7X5dWTV9YVPM7Zo55VUvvz+058z0278Zk+7YxyYdxNv6y4K4ur6VhEo3yxe1tY+zf5dZEry8jdNmUE/8u92R68tMemv2Q0HU2IqK8zTN+RsXEqu45I8Kt0UumDIvW9ubavGT2m9xnRkR09PiT1wvmcm0zdpm9o9Jd19q033FIry//xemzMlbO/bupmL+vdHOdk13fM7jpoqtmScGayy1pp8waJin8O1K9L+DmijM1v7Z3/bKbl/XMeVZERN/snext6X396WldjyIiqk09H6x29A1X9/t6dtuaPvfbeETvoW/2j9u8bt/wUOLnFW84pO950/TtqwVT2+qmrmubqemfS37fZWCWSpsTfW137N/NuK+vrRWcjTiq+86Hz2/txV9+AwAAAAAAAAAAAAB2PQ6/AQAAAAAAAAAAAAC7HoffAAAAAAAAAAAAAIBdj8NvAAAAAAAAAAAAAMCux+E3AAAAAAAAAAAAAGDX4/AbAAAAAAAAAAAAALDrVS41wZNbtWiU6xf9vF3J7XX3relz9+V+KmN7Gx2b98BCX8Yaw4mM7cs3bd56S1+7stSWsY21hs27UB/qWO3icn3OMEts3nvN554fHpaxly6u2ryHDq3JWPrIlr02f+A/y9gn37sgY5XSos17ZL++5+FAV/FyydfR69ojGbt/vSZjD27oWETEC6Z13oNNXR8qib/fcabb1P0n98nYny81bd5Rpj/3hindVqulzOZ9/Ix+r+8/r9v50KeNfZ2ujC30dGxtqWXz3jCzIWMzU7rfWfmgv+FHTh2QsTMD3Qc0yj7vS+b0s45MXYmI+OSqLv/puq6/rn+IiBh2qzKWmT5tet/A5q1XdT2cdHXetKAfzcY6Pp6UZWyx5t/Nq/ZuX/79NInfWraXXlafWomobdMPNsq+XPY1dXxvQ/cXZ/oF5W26uNWRDo5TXdcjIjoNPeYdqL5Axjby8zZvJdHtM8yz1Eq+HA7UdV80le+XscFkzeYd5T0ZWw1fhh9f1uNaP9UPuzTy84KK+Q7mVEX3F1e1dSwiYjbVeVdzPS/op+adRsQzPd3uT/Z0OZRchYiIoSnDcaL73IK0sRhHZGwmm5WxcsXX0XZVl6/rPub89CgWa7ovn6ro2BejNNcFMUh1PYrwfWFm8kZE1Mu6nGpm3rDY8OPsl4txKyLimb5+sdWCueuRtp7/P7o+J2MbI18fTmxNyVjN1KXVvl+3qXGsaF12uTXKaTS2eddLQ9+Hnd7Q5TIy85rZjh4/IiL2vk5fW7pOr0GiXtApDHX/Vzp5Qcfqfl0/XtF1YLTl26fTqen7rZt3k4WvP2aIiDT3bWyQ6WcdZHp/o5r4cignO6vzezI9j4mISOtjGduonJaxVln3JRERG2N97dZAxyZpwf5GrtfuhYP0TiVuf8OvZytl3cd1agdlbCEz7Tgi3LRhdaSDjYLmdt2ULsNbpvUexp+c9vPE9dLtMlYLfVPXT9u0sTk+KmP90HsJERFHsxtk7H8+qt9bq3XS5l0/pfuekZmPFCxXLLcSLkpbN3t0bgfjKw76/Y099e3bTS9N479/quCmLrPuJNl2njgomOrmpvRO93Wdn636/b52T49dlYp+m6ULegyJiEiqun8sVfT7SmoFxxTmWltxSwV/++fiJpRXCu7X5a36viompozdgqHAdW39bubNfkMj93UpM+Neau7XrYUj/JwjM3lHl5C3YupSu2Ct7KZmJbM2KtpDr5l1nlsjro183Z+Ya1fM2qix5vuA+aqeQ1ULzmOcuSN63fqKOb3/8ZGunyNNzH7azbN+zfJ9/8tZGbvwXn1e8J7Hr7J5W6Z/ObGl32vRGO7mX65rKdrH6PXMvsCWOT/KfN1PxKOmZqvss/GX3wAAAAAAAAAAAACAXY/DbwAAAAAAAAAAAADArsfhNwAAAAAAAAAAAABg1+PwGwAAAAAAAAAAAACw63H4DQAAAAAAAAAAAADY9Tj8BgAAAAAAAAAAAADsepVLTfAttzwTnWrtop9vdev2upXRQRk70CzL2A0HL9i85QX9ucn5voxtbTVs3pU1fU/ne00Zm62PbN4pE5+ppjI2zhKbd2OsX+0zPf0sc+vTNm+jOpGxR5/W5RARsTa6uJ48J8318xye6tq8uSmLJ8/P22udeimXsVGmr5vTjxkREYNUf+fkRE/Xw3ZF14eIiHNDXfe3Jvozhz6t/YbM2lhH09z3AXno91YxH9qp6vcSEdFs6DY1NnV/kupYRMT+fRsy1lgoKETjuvGKjNUuzMhY07TFiIhDe9dlbOoqf7+3P67fXaOpP7d1tU0bU03dcMbnxzKWDXze3BRFzXQB9UX9mRERlSMtGbv+RfpZrjn9tM1bEmPcxmAU7/gpe+ll9dRgIyrJxe/6hqYfB/qpbrvvOaXL9IF42OZdHj0mY73hkoy1G/tt3jvLr5exPSX9ji9MfN5qrvuMdrkqY2nu+7CSGd5vSF4qY6t1Pz/KQrf79dD9UETEpwZ6/lQ3fX01dDlERFSiYMAU7jnn51aDRZ3XTDHjoTUzuEfEA4MzMlbN9WculqZsXlcnLuTHZKyedGzeTq7HkFai73eQ+nKolXUlrVV0rOGH2aiV9OdWzZysSGbmmC7m5qZF3LXjgrxunlg0/6+W9Py/N9GxcuLLt2fuaWCmFMtm/hkRMTZVrW3qUhK+Mn1gWfc9T5k16tBX/Xhma/tfGGU7r587UUq2Hytmq35ec7Kv1xn3rrdlrHrWP9/bZp6Ssc78lowlHb92jNRUrqbuw6o3z9q0pRObMjZ+VD9rqezLodMcytiCWQdvTnx93jJtt+omDRHRy3SdWE70vKGojU1nevxx48ts6HlXRMRMfpOMXUj0/tFSnLR5h2O9Lpqkeo2X575NRbg6Yfqwbebfz/dzm7V9Mlav6nE/IuJNza+TsQMt/c73FTTVmaruPF33uFkwRjy5pcvwvnXTjsOvk/fHIRmbbej2tjH27a1ldldfmd9hr/2Bm/Xz3HKr7mNLBVPp9ZNmf9SM/b2Cfsn1WwOzVpwUzIFSU196Jm+94M+6quJZ1c+vpEZ5+zmxmV5HhN8jS8y1o8wXTmbiLm8UzJkys9GYdM1artKzeW0xuQ6naK6W6QdKMrOmrfi2kpdM+Q71vCEiIrpmHjTUZZif1HsnERHnh3q/51CyIGPZJbSXspmvNAoq/1RVx900aFAwR0pNnXB9UVEpZKaWurXnuKCtJuaT3f66+8yIiLpZgztnNvXaISJiZMaJ/Zmee5UK9rrT/s7W6Nd0XmvjT6z+voz9Hyf+tb32G/79t8nYS79Wb2h//bTfO/70I3pP8kMVPRfvFxxRTFV0XZqquDmdL/utgZ5z1Db1e81T/86V4fj5ncXwl98AAAAAAAAAAAAAgF2Pw28AAAAAAAAAAAAAwK7H4TcAAAAAAAAAAAAAYNfj8BsAAAAAAAAAAAAAsOtx+A0AAAAAAAAAAAAA2PU4/AYAAAAAAAAAAAAA7HocfgMAAAAAAAAAAAAAdr3KpSaYuTmL6UZ20c9no2+ve8lqV8Ye2GjJ2H0n9tm8B/5Q561VqjL2xOqMzZvliYwtNoYy1qyObd7+WN9Tq5zK2Eqqr4uI2FO/+J08p5rk+n5S/32I9X5dxhoVfb8REcOBzl0x9zRVH9m8zp52T8Zadf9uJqYshtmCjB1sDmzeTfPO3/VUTcbWxvqdRkTcNteQsRdM63dz07TP+0xPl8OD6/q6+brvXo629T29ZnFDxm48vGzztg/pvMfu0+3890/stXn3nNZ5796v72mqpfuHiIjljbaMXRjq9jbuN23ejyzNydgtJ3Q/GRFx65El/blj00dkvi6VFvQ9V4b62u6K7h8iIpbOTcnYdEe3x7lbJjZvad+0jOUvv1PGylXfPyfD7etEabMf8VO/Ya+9nG5tT0etdHG/MVXV411ExNpQv49Jrt/jS6u32bx/met236zoPveqeIHNe7Cm21ia62c53NDXRURUTVPoT3TeUebrcyXR5X+woutkeVK2eZ0zpRM2vpw9JWPVkp6zdZI9Nm8tOyRjrYru/z42etzmfXhZ18MZM36vly7YvIPQdbSX6XHgydz3CVmu5yOHyrfL2C3VwzZvd6L7uGqiK3DbVe6IqJV0Ha2Vdaxs5noREXn4vmenef1naqPMl4Np5ta4IG8/1eXQL7i2ZJ5ofaz7CDcPj4gYZuaezP1uFEzhB6nrK/V1RUW/YsepndWziIiSKCfTJK6I95+fikb54vH7YNPPwx7f1PXnfF9fe7Lv1/V/evpqGfvBx/U87OZDZ2ze0UjX2X2v1teVrpm3ecsH9LPmD+s5cmbqekREo6n78v35loylBXVykOpx9mzFj/0l068OE/1ex+HXL3noddFcckDGpmv+fhNzv83JrIydy47bvMPJqozlZgwu7m30/SaJnsdMt47arHdWvkrGXrdHr2e7fmkTe/R2QUxV9LNOV3zf4sZhV797ZgyIiHhmS7+b86VzMjaf+fnntc2OjDXMPKbgdsNcGnubvu7Pt3V7rHTM3GqP3j+KiJhr6oH4zEf0mLA09Hs5W2avrDvR9zvwW4a2jN12WL1gGVQtbT8X76e+bl8Jc7U8muXL+7luj9ftZUdEjHa4hkwKThMSMznK3SS65/dpo6TbSjIx5Toq6CAbZr1WMRPactG4ZqQFDWJLz6HyTTOGP+jXtBF6T2FfU5eD2zuJ8Pscrv2OC/ZH3DjSMvWwXVBHi+ZfO+XWTWtjfVPjgvtx7VytUYpiEX4MH+e6r98ya8sIv5+9NjBzpLN+AfmgOb/rmr6lk/v1QW7mfOOJP4d4w8d+R8a2/v43yFh1acXm3Tel1yU3mvJ16/4Iv3ZtmfGpqC6NUv25Wz1zvmHahbPlzic+C3/5DQAAAAAAAAAAAADY9Tj8BgAAAAAAAAAAAADsehx+AwAAAAAAAAAAAAB2PQ6/AQAAAAAAAAAAAAC7HoffAAAAAAAAAAAAAIBdj8NvAAAAAAAAAAAAAMCuV7nUBFtPRZSqF//81JkZe93HV9sydq6vr+tOWjbvtcNtbuavvHBxRcae6dVt3sX6RMZuueWcjK2fadq8Jzc7MrZQH8rYsnnOiIizA/29hmY5l7HuJLF5H9+ak7G3HtXlEBHRKGUmb0PG9jZ8GVbKOm/VxIqc3pjSeUu6DKfrI5t3sd2TsTsX9svYPedSm7c30ffUquhyaIe+LiJilOm6NlvT181WfdnPVPXzuDJszOq2GBHRP1uWsf/78b0y9gvHfsrm7bRukLGXHf86GXvh7D6b97ZZXQ7zNf2sSeLfW8k05eNd36Zap3U7d9oLSzZeXtDvdf1h3Wfd8/RBm/eBdd1/76nrevjKFT0mRETcmOk+rXLrloyVln3e/OET2wf6vu+43LbGeVS36Zc/vbVmrxsn+j6XEvFsEXHj6AU270vLL5exVlm367m6/x6f6xvz0A1luubzZrnOWyvrvC0Ti4io60eN7kTfU7rl50dV0ym0JtfZaz+VnJGx1f5TMrZeesbm3azrPmNpeFhfF76vaSTTMlYy3/ucymdt3nPjB2Vso/e0ztu8yuZ9ff2bZex/ukbfbzf1delDS3r8bph6OF3zeafM6mHR9LkLZkyLiGiZOdt0Vfc7tYqfH40mulGNM12+w8yXw6bJ65QK5l2TXH9upWDsz0x4ZJ6naz6zKK/r0ub88irKib54c6yvW9FLpIiIGJsb3jBDbaXga+GqH/Vv5fL75MooqtuUXS8zhRYRDycfl7EkdH1eH/m+fJLqxfs9D1wrY7MP+fnd8uQJGfud818uY6/+Jj8PG50cyNhHnjwiYy/Ye8HmbVZ05aqb/q9o7Tg90A2pZN5bREQ5cWOe3q/ZStZt3rlcrxVumtMLxAPNnfdh96/qZx0N9Lw8IiLL9Dt3ksQsdiOiWTsgY+26XneWE985vvUqPY/ZW9ftPLmE3qhTMJY6IzOW9lIdq5Z8p3uopecxe7PrZexox49p++r6WVfG+toHVv3+Rnes42W3OI+ID5zW9eUtN2zKWKVgvVJq6PjjZr9r06w5IiJ6Zg561uznbpkyiohITRWumTJsVHz5qr/7KprrXQn7G6Nt14NFd5IWzNWUcsHccTDRE/vRUPe79ZGf1+dmDZ5MTD0Y+74o3zJjphtEJj5vMjbPUzWLn4K2be8pLXjWnn7WfF03tHzk3/mRlp5IP1LXewqDgrXnyDxr39SHIq4I3R01CpZq7lp3t0UtcWSq9/LIzLfHvt+tmrA7b+mYvfeIiLHpB9fGuu6fM+dOERF987FlM78qqikDk9cNiYOka/PWq3tkbDj2513fMvudOnjbvAyVn16zeSepri+zNd0/lBN/ZujGk0ZZF7A7C4uIMFukMTR1KTXzSOf59iv85TcAAAAAAAAAAAAAYNfj8BsAAAAAAAAAAAAAsOtx+A0AAAAAAAAAAAAA2PU4/AYAAAAAAAAAAAAA7HocfgMAAAAAAAAAAAAAdj0OvwEAAAAAAAAAAAAAu17lUhN8/MmD0SrXL/r5v3vSpx7nIxn7tqP6uqvbPZt3pjmwcWVp6L8HcHZQk7GXn2vIWG9YtXnP9HXezYnO+0zP32/NhF+/d1PGntpq2bzvOaMT/9npPfbaIy39zmeqmYxtjHUZRUSk64mMlZNcxroTX0c/sdo21+rPzHMdi4g41NJ1+O8cWpaxF836d3OgvSFjneZQxla7TZv3cKssY7Wyfm/dsS9fV/7lks472tT3ExFx4sysjI112rh75vtt3he052Tsk72zMvae9SWb9yXzV8nYa248KWMrF3T9jIh4Zr0jY3Xz3iIi1kYX9+nPebqr+6Wpp3Ubj4g4mOk6+sePXStjZwb+nV/bnshYpaT7gNWBfpaIiO4x3Zbb/+keGTvxsSmbd35h+z5gY+zL73L79OTpKCcX96/XlY7Y69Jcl+lSnJCxRsn3CYfberycrup3USn4Gt9U6sYIfV21IO/A5E11EcW0nxbEQl1fPGXa7p2z/oa3Uh3fLOivR+deIWOPNe/T12VbNm9vckHGKlXdD1XDj1tT+ayMvXxGz1WubpsXFxHPdN8iY39Ue0jG8vB97sv26HnOTFXPax/Z9H1Yo6yfZ7Gh6+9szZfDTEU/z77GWMY6Fd1XR0TUyqn+TDO/rxSMaeOJHkPGmW4XS0M//zw32Nl3iFsVX75uDl8x89qIiJLp01y/NMr83HWoX43tRxdq/t3sa+g6MTB91gPrvs9a3tlyMEbmOSMiumIiOc78e7ncPjp5X5SSi+t1ss3PPlt3cF7Gsly33VpFzykjIjqNQzJWL+k5US9fs3nX+8/I2Bs+8msytu+hF9q8g1TPR2crXRn7pbjF5n3hQV2+qanPRToVXTEPtnzdO2/2MKqjeRkbZTM27/UdPQ7fPqPvd39Dr0kjIva2+jL2mj263f+XT67YvI3aXhkbT/Rc5ej0623e//UqXSfma7ocVse+ra6YJcH5oS6Huln3RETsqet23jRjcLkg79DWb32/HTOfiIi4ekqXU9XcU1FeN241zKMUdfUrEzNXKfi7o986ruMP/cGNMvb3b9L7EBERf3nmoIx94LwuiL1NPy9w+yorZtLQm/h3Y5aZUSvrMhoXzGPU330N/e1cEdfPrUencnHfnBTM8YZmvbY10n29b58RqSm7ntmvrnd1fxIRUTbrqsTs/9rJbETY6Mg8a0FeV/qJa/wFea1JwcTTNIjEbIJUDuh1dETES289JWPj7LCMPVyw9nTriaHZO5lcwjTa7dk0zVo4wq9pXdfQK2hT7rygZ6u+r0s1M+6lpj4UrfOO9/RYe66vP3Oc+Q50ZNpNYlrydM3f70JdxxdN1X9ter3N28j1HvsD3d+3106bipicPCdj5aunbd7yPbqMp2u6D3ZzpAg/ZrprayXfZ7kqnJl3npo9Gef5XsdffgMAAAAAAAAAAAAAdj0OvwEAAAAAAAAAAAAAux6H3wAAAAAAAAAAAACAXY/DbwAAAAAAAAAAAADArsfhNwAAAAAAAAAAAABg1+PwGwAAAAAAAAAAAACw63H4DQAAAAAAAAAAAADY9SqXmuCZXi2a5dpFP29Ucnvdly1WZexF+87IWGdqaPMOB/qRTq5Oy9jpnr/fQarj/cHFz/+cWiW1eT+2ou/3bG8iY9d0/PcWburoa2++eknGbq36clifXCdjJ3qJvXa2qp/1lfv1PTVqY5t3o9fQ97Q5JWPHenWb99zAP49ysq/rdkTEoZaO3fiadR0LHYuIKO/TiZN9szK2/xO6vUVEjJYzGZv0dT1cOqfLPiJird+UsT0LWzJWn/Ftqntcl/9eXVXirZ05m/e26Z6MfdVoQcY2J2Wbd642krEPP35Ixh7d8vV3kOr6e/2Ub1P76rqfXRrqd/7Bs4s27+urul/aW9flsD42Ly4immVdRxtlXV/Gue9HT52ZkbGFXlfGNgb+3SyUt6/fiRlnroRG3o5ybDN+FXR9Wej7rIXuhwaZfv8RESe29Ae/aFGPs0U9ddnMdCo76+YjImKsq50poWLVRF/dqer63DJ1PSKiVtI3PEh9P1UpdWRs/4VXyFi54CuWXVOI0zV9T1lBAZfMe71jVn/mrOmjIiLmzT2d698kY385vsfm/TdLH5WxZEkX4t3Vu2ze66f1/S7UdSFOmT41ImLa1MOGubZi6mBERM1cWy7p+81z35DHpn6n5tpx5vMOzeNM7KP6vGlZP2s18deWTdjdkr/fCDc8ufbm7iciom36LRfrmDVFRMS5vqkvpvw3XcceERvj7edP49zPqy63N9S/Mqqli+ca3YkfBz7c+HMZG2d9GZutXGXzNkOvsRcyPTfsx8DmPZfcJ2OTdEPGzqzrPjUiInLd1w8ber31vzzuB7Xv37pDxl67Z03G0oL5aNO0heun9Pw5IqJa0vOnC0M9X7227evSvoZ/d0q9YBxw/fnqUD/LTeXX2Lznqsf1Z5re8Wunb7N5O1Xd9iem33Rjz7P3pHUn5tqC3T03rrk3UymY2VbNe3VrsXn9Sp+91oz9ox0+S0TE0FzbM2vofkEf+0jyKRlrJX6vYW92UMY+uaI/97s/ZDaXIuKOGT0HOj/Qa/6/HDxp876xc6uMJWaczQvm8ONcv73EvNhqyfejmfjgvOiGroDDL9yK6frFlT8f+XsZrejY6jldD1a7et8tImKc6rLrj/TeWnPL73tWW7p+JRUz568ULCBNP5ebCW1SNNk1/Zh7M4mbCBfIixa1mblnU06lju9cW7foe35N/YSMHX1C749FRJwy++9uv6FoTHR7qq4/X6z5tf3+pp77OmsjX74nzFnDmYErB/+5rpwGZnhanvg2dXxL17ONkU680PCTjvm6/lz3qLMFc4ODTX2/8zU35/B7Xt3JPhn7pzf8PXvtV77+CR3s67z5pj/jPHy9PocYrOry39zwe9JbZs+6qD06JfNm3TZGyeyBPnvt9vFywbrif9wXAAAAAAAAAAAAAAC7HIffAAAAAAAAAAAAAIBdj8NvAAAAAAAAAAAAAMCux+E3AAAAAAAAAAAAAGDX4/AbAAAAAAAAAAAAALDrcfgNAAAAAAAAAAAAANj1Kpea4PqpQbQr+UU/PzNoFVx58TXP6Q5qMja/t2ezzr4okbH6J1dk7NbVaZu3Vdb3W6tOZCzL9P1ERCzUdezmaf3dhC/bv2TzTrcGMtbYk8pY93TV5t0Y6+dZHekyiog4PyzLWLWi72lmn36WiIj0jC6njVVdxXupfzdfd3BTxroTnfc/HTcvNSL21Nsydke6bK91ss2RjJWydRlbflC3t4iIpfUpGUtN/V4f+bz1ciZjJdPeMl1VIiJitjGUsZs6uozma2Ob99r5NRm7raXzTib+O0ZPL83L2IPruq48qatnRERsjXX5Hm76e7ph/wUZWx/rPqKc+D5gz9VdGTv4Et3OW+/da/M+vqnHm3ZF19E0931Ao6wr28HGhoztm/UvZ2Olue3PN8e6j7wS9sZcVOPi/mp/07fdiqk+m5sHZSwz435ERC/TbfDYpu5zD7V9fZ42w5qrs92Jrx8j3cQiNY868cUQA9Ov9kx/0iiZGwpfn6sF194wpT93rqrfTdP05RER62N9rXs3Wfh3szzU8bWxzttL/RzoVE/nfXD8tIwNUz0GR0RsZX0ZO1R7oYzN1X3d71T1szZKJlbw3ky3GhNTfyeJv9800/Vwa6j7pUnq826acWvZ5F0b+7xmmLWxim9udmwq+6ofVXPLJdOmCrolG89McKOgHz3V1+Xv6mHN1N+IiJopqNNdPdYsZ1s2byK+Nz7J9dzzSviaw1m0tplHTxVUrpetfaWMLZtH6BcMXE9u6fX5OPTYU99mDvLZZppXy9hKV88b08yvHctlt7bRBbE6OW7z/vvTe2Ts1s6cjM3U9DoiIsK91aK/ZKibttIynfnBpq/TC2a99WfnZmVsbeT7hJp5oPMDVw9923Wuy26RsRfOFiw8jYEZm9w8MSKiaoopMe+0WrAWy838aZzt/O9isoI1lVI0d62YeUzflG8/9WuqnrnfDbMl0Ev1vl9ERHei9+jW02fstRcqT8nYcKznkeNUr68jIsbxrTL2RHxCxpY277d5X3D4Zhlz86fH/JQ4Lgz1O68k+r25WERERzSqYcF+7ZVQuXE+Kq1txr+u73fLS3q9kKU6NizYY9ga6rF4YvqFXt+P4fUN3X+W67otlRoFE2UzUFzS2zTrkDD1q2gO7T/zkq7W3IZNRCRtvTaqXaPv6aqKb8DTJ/X8a7Nr6llBn+3Gp9z0562C+VWr7veAlXmzhxERMVPT+5Ozve33AiMiloY+r+uv3N7Uqi+G6E/0xdM1/W5unfV53X7OY3o7NcYF/fJsVfcte+q6H51kDZv3QEuX/0Ldj7XHP6XPFC98UF+335z7RURc9SrdVqv7zXzwuD87Tc7p2GCkyyEtmCu6+aDbi6iYvcqIiLKY+1bz5zdP5y+/AQAAAAAAAAAAAAC7HoffAAAAAAAAAAAAAIBdj8NvAAAAAAAAAAAAAMCux+E3AAAAAAAAAAAAAGDX4/AbAAAAAAAAAAAAALDrcfgNAAAAAAAAAAAAANj1OPwGAAAAAAAAAAAAAOx6lUtN8NI7T8d0rXrRz1c+ctRe98D6xdc85/dPLsrYPzq6avOWvuluGZs69z4ZO/L0yOZ95XWnZGw8KsvYcOiL+GsP6ecZTHTeUapjERFZnshYqa5j3W7N5t0Y61ijrPNGROytT2RsZrEvY+VmbvMeX5mRsU+u6no2zmza+OqDAxk7UEllrHFqn81775q+p4N/pq891m3ZvNdNdWWsVdVl/8GlOZu3O9Hv9cVzPRkbpP67NZsT3TaeOa3v6YmNqYK8um28ZEG3t1u/2fcBk9O6ji4/qNtNt+/b1NCU04Yp+5Nd0xgjIs11u1ke+Xv6wPGDMnZmoN/bVx86b/MON/Wznn1a1++uqSsRES9d1O91Y1SXsQ8sd2zepaGva8qetm6LERE9Uf5bk8/v99EejvuiFBf3R8f6C/a6mWxexxL9Hsvhx4ipys6mJKOCvjw1Q0hqxsot3W1GRER/ohNXSv5ZHTc2jTKdd2yeJSLiwlC3hS3Tb0ZErIx1fGOsP7da8uN3p+LjytNb/llPbukx2lWXakETPDXQY163tCZj9bKep0RE7KvcImM3JFfJmKvbERFro53Vw2pB/XXxJNOFuLO3/ayxyTsomBOvjfW868JI9zu91JfDTlt50fzTNPNCplsKd8dZwctxt+QudXPIiIie6Xsa/rVaHf3KYznbkrF+ouf+ERFTeXvbn5d2XBt25pleJRrlix+yVvLjaL2s39aBpn6GfkFbiNBj/5Nbut8scnXyQhmbndZ94/7skM3bD/2el0onZKwUvlLOZdMy1jX9VMv0bxG+/yvoTmLs5g3m4qe6DZv3vef0O/9vq0/LWKngby8Wcj3HzExvs166YPNWQz/PS+f1euD6zqbNuzTQc6v1TL/zoj63adqqj+n5z7Nx/dLd/pGrg0XclKKc+BpsuvIoJ7oc8oI+eWjbhZvX+nI4WL1dxp5JP2qvXe89JWNp6uuhc8/Gr8lYkpg5W+4XQstDfW3D1NFDbV+G5US/dTdPrxXsRU6J4dFs610xyXwnkvY2fUfL79GUTMdRv6DrSHvN73P1zTw5NW1/VLB+HPT1nKTW1wVf7vgOMinqQJWdXhcRYfbWCgdid20Rd8+ucy161op+r6WOrofVgz7vXF3XtdayjqUj3y/kO1wcJQV7EU5m5r7lgg2oxIxP9YruW9sFe/6nzN7yOdMe3b5VRETT1IdX7tHXff0Nz9i8m109R9p8er+MFW2l7TH1bLGp5/grBfvgGyNdTr/5jJ7jR0RcGGy/RoyI6E90fXnjIb/n/JbH9NygdbW+rugcrd7Q5wkTc0bh5ooREWHirl0UvfNyafsyVD+/KP/z+i0AAAAAAAAAAAAAAL6IcfgNAAAAAAAAAAAAANj1OPwGAAAAAAAAAAAAAOx6HH4DAAAAAAAAAAAAAHY9Dr8BAAAAAAAAAAAAALseh98AAAAAAAAAAAAAgF2vcqkJ6tc3ot6oXfTzb7rzgr3uTZ/akLF3/tmNMvbrH77e5v0Hv/p+GTv18LSMzdZGNu/s3XUZGz7clbGl476Ib75jScbOPjElY396Yr/Ne7jbkrFXzZ2UsenZgc378nldTv3Uf5fizoVVGet82YyMje7T10VEPLihn7VmbumOmYnNOzPVt3Hl9ft83tVReUd57zLlFxFx5Bodn4wSGeuOqzZvo6yf5/YvX5GxrSds2jh7TrfHjeHFfcpzzg39/V4Y6metJrMyduvUus1beesdMtZ554dk7PTj+jkjIs4NTN+S6mdpV3w9WmzoeLuc2Wuf2NJlXCvlMjY307N5l851ZOzD5xZlbL7m21SrPpaxtaEu355PG5OSLv+nt5oytjn2/f50dfv77U9Sf0OX2cb4VCTJxfXk/PgBe92tra+RsdVc163ZaNu8tbIu71ZFxzJdJSMiYs0M7yPTFNaGvp0MU/3B02bwSUI/S0RE1YxbzbL+zEriC2Ld1MuTfV9nz5upQX+iP3ex4Z/16pZuhJtjXRAPrw1t3mfyszJWDt2/NfOGzTsK3dc0Q/f1jUTP5yIi9mR7ZKxa0eUwMnUwImJzrMu/lOhYreTncy6a7WyKExFhW4buySPGmb/fgZmfDjNfR536Dp/VDC2Fxr5bsn2a6WJtvxPh59PucQqqaLjwlhmjXb8eEfH0pu4jTpWekrH5/KDNW5G1//P7ffJ2JbfjgbJh+oRl088XVLsYmBddMjWklej5fkTEfEnPtQ7mczJ27azPuzXW/fXjXf2ZFxK/v3GqpNfY73ryWhm7pqPnxxERV7V1+S7U/NvpmbWEa9dPbfk6/X8v/6GMdUfnZeyq1its3sjnZagautNdyPbatNc29F7DS+b12O7WwRERianDJdPD1Qu6jOmqXhPMVPU9tSp+LZGYe0pzXVdcLML3gImZn5YL5q656T9K5tqiecHYDIiNsr62bOZOERF7030y1m3cYK9dNmuobqr3Ti9FydTf1NxPRMSPPfa/y9iR2TfI2KuqL7V5r5/W7XzabAMVjYgNsYdRtH66ItqNZ//5m+roa8pzeu+yeV73cRERzb6O9wv2Cp3UzL9TMx/JRwXvxC3+80t4n3ZTwbSHgnWT/8yiGdYOFS02XNzESh0/v0rMurXU0WNXXrDvknb12JaabfvM7INHRGRmjpRcwhqxYvZbp+p6ETM/8YvLJbMX3r+ErcSDLf3eXrNPn1kt3OHnSJ2zej32OnNm5cb3iIgDM1sytryp857u+/7MdQFnuv5ZT070eUIv0fd739oRm/e2p/T89taSnm+X3eZJRFQquo6WS649XsJmzyVQ06+Cadln8JffAAAAAAAAAAAAAIBdj8NvAAAAAAAAAAAAAMCux+E3AAAAAAAAAAAAAGDX4/AbAAAAAAAAAAAAALDrcfgNAAAAAAAAAAAAANj1OPwGAAAAAAAAAAAAAOx6lUtNsPHJUUT14p/PfEXDXte4uSljL7u3J2N/fKZl897zgYMyNlMbyVinNrZ5S7cclrFG6ZSM9R/3RVy7RpfT1bckMnbrf+javN2J/tyTJ2dlLM399yHWx2UZu31uw1579PZV/bkn9P3e/4l9Nu+xrr7nPY1cxl68d9nmdU6vTMvYDdOb9trN0TYN5q8c6Oj3Or/g3/nWSs3GlZn60Mb3LZjnKes6Wm2lNm+9OpGxlY2OjM1UfN4DjUzG9phn3Xr/is1buuceGXvqqUUd22rbvJ9a03X/+KYuo7v36bYYEfGttxyTsUpFl1FExB8/ckTGWubajU3dr0dEXOjpeK2k2+oTXV+3H93aL2NZrutoqj8yIiJmqvoXSjptbJr+NyKil27/7nqpSXoFbA3ORJJc/JlZpsfKiIjHR38uY+VSXcZuK7/e5q2V9HhYM31NXvAeNyb6F7pjHdsa+75mnOu2UCnpfj4P/56rib6nZll/ZtlcFxGRmfDAP2psmXLqmfLd1/TPerA5kLGTua4Pp/ILNu9TI91fz9WOytgNcZvNO5PoOegg07Fh+DlmNXR/Psr0Ox9lvnyHppMbmP6mO/F5y4med7m+saiOVrbpjz5D9JsREQVdgOX6D/csEXYKFNVL+HqxG5uKntXdcs3cU6tgRdgwY7R7bWM/3bDP4+roct93Wg/GQzK21H9YxkaNLZu3lNy07c/T8OPm5bannkarfPEccWviK96Zvm5HZ02ZjgomTJup7+OU2aoeKyMi5hv6ea5q6/qxp+brx6Ypp1ZFr/FObPl57v35ozL2ofR9MvbxDb+/0dncI2MvrNxgr71pRsdcH/aRFb+uH6Z6fbjQ3L6dRETcXvL3u8d0Rq4a1su+DG/UrzVaZV1/u2NfR522WTPVTZ8aEbFg1qzTdd3fNCp67Rjh10UjM85O0p0Pam6MKJKaeU6W6/utlvzgUy3p55k2679WxZfDINVr1qPZzfbaSlOvoZ4cPG2v3aksN/XFxZ69WkZOrP2ZjP1h80mb9Wvjf5Kxox39zqeKdra/mP7sq1p99p+/ruLnEklNP2RpWvdV9bm+zdvu6s/NTZ9xKTIzTJsl9l9d7GKmb3Wx5xPXF+7wuuehaDGy47ymQbi24o95IjH3WzILkbzn+5t8osfptK/fW1awv5aO9D2NR2Z9PvIdjhu7XKxUsFZ23Jqr4SZ8EXHnrC7fq2/U5zilWT8vruW6b7lpXZ/HDPoF5WvmJOsjPQ4X7bc27cf6/fdSoifc6xM9R3X7kRERD21Mydi+c+b8aI8/P3Jzs0uZt+1UUlD3Vbzouud8MU0BAAAAAAAAAAAAAADYEQ6/AQAAAAAAAAAAAAC7HoffAAAAAAAAAAAAAIBdj8NvAAAAAAAAAAAAAMCux+E3AAAAAAAAAAAAAGDX4/AbAAAAAAAAAAAAALDrcfgNAAAAAAAAAAAAANj1Kpea4NTZmViv1C/6+bnfSO11171mLGM37VmRsUc3mzbvTG0kY3umuzJ2cnXa5h2/73EZS7uZjI3SBZt3+R597Ynz+lmf2GrZvEfbfXNPZRn7r6fnbN6PLA1kbH+jYa+942r9PElV39N1hy7YvK/s6bybE523XvV1tD+oydixblvGstymjWpJ/8I4099HuW953uZ9eEPf78TcU63gKzC3bXRk7OiFTZ23MrF5U/Os62PdNZUSmzauavVkbGFKxz780GGb98Mrup7tb+h2vK/uy2Hx4u7zM3qm/t42rZ8lIqK9oPvCiu8+4pXrSzK2ZPqep9d8Pzowfc/SSMc+dcE3qoWGrksvmNHv5nBTxyIiXFXrpzp6bqifJSLiwnD7a4eZv5/LLcs2Y/un9J1Cf6T75FpZ9xdp2fe5Y/P4o7SgYzXctSPTYScFfU0jMeNLWV9sQhER0Srre6qVdCG58SMiYpTpDy4q3rEpp2Gq7+n8wD/s2qgqY6cHehx4evJRm3erf0LGKiXdl187/XKbd2LKYcuMW91UP2dERLmosgkDN7hHRCVx8w39ma4tRkSMTHxo8tYKBnBXhzPzLCUTi/DzrqZpb0U9cpab57mUrxebDy7qP9ycbrqqn7Xhhy1bl5yiul0376ZU1QVxoeVvuLExpe+ppOfLG8NTPm9jZtufZ6HXtVdCo5RFY5vx4NzEL+3XRjt7j6OC+ck41+N7ycymagUV+qh+jXFLR69JpwrWID0zH22U9cS8U/V9+WL/BTL2yZ7eEzgfx23efmzI2JOjZXttaX1Rxk6P9N7IA9lf2LxpqtcZ1+S6HPY0fB116+iK7d98XdquvfyPzzTjYe47c5fXxVoFdXSuMZSxZk33N9WKn2vn5lnrmb6nSerLweV15euui/D7Vm7O4Mb9Iu7KZtmXQ71kxqZMjz0REY3QHV5yKdu2uX6vtpQS/5luWpCbzFv9Yzbv74z/Txl76ehtMva6Bb/vOnXJO9+fB0nB5NF0gklb16/KjO5PIiKaq7pPSU3bL+oXyuUd7m0UbajuVFHenX5u0QZl6QvwN4dFa8uie94pt7ey0wE+wq6N0qG+dtz364XRUHcMQ7O2d7EIP+6lJjZIfV53rSveZkH/d8DMOap7dBm6c5xn4/rd1KZ1vzMq2E/t9vUDuTJy686IiJmavrZV8W1muqbvaX+mYx2/tIhGSY/hI3NeMBn4MkzNnk1uiqlo3yXf4Z5NUpC3Iua3FbMG/ZzPfl6/BQAAAAAAAAAAAADAFzEOvwEAAAAAAAAAAAAAux6H3wAAAAAAAAAAAACAXY/DbwAAAAAAAAAAAADArsfhNwAAAAAAAAAAAABg1+PwGwAAAAAAAAAAAACw61UuNcHTm51olesX/fwPTvrU/6/NKRm7ac+KjF3dGtm8m+OqjJ09tyhjH11p2Lx//jvTMvaWo2dlbO/sls177NycjP3eyRkZWx3mNm+eN2XsttlUxq5q6VhExOqMLqeZ2rq9du3DYxmbTPTnlpLE5j0y1ZWxU92WvdZZ719cr5/zxJauZye7/t2MMh1rVWoyttT372aY6fI9MqXvd1Z/ZEREPLqlf6GX6jp6uDWweQ9Mb8rYS/cty9j5Lf9O8/D1RZmvD218sa7r/kvmdd0/tMe3ixf29bt5dHle5+34vuXccd1nLXd1/xARcf2hCzK2/zr93paPtW3e4bgsY2mun3Vt2lfSuxd7OvbqUzrv07rsIyLe+8RhGXtoQz9Lq2BkrYqvnaW+67gCypFs114S/724Skm3hUpZx9ZLemyPiDg30PVyfaQLdaqq30VERK2k+4RmWcemq/5FNiv62hlTZRfr/kXP1iYyVi/rAWRl5OvzVqrf69iMSxG+bo4zHVx3A15EvPecri/3rC3J2Eb/mM1bKes5Zr2s+8aJeZaIiNm6LsN5E1sZ+jY1Mp/ryt5U34iIMFXffvu1qCsaZzrx0LzyqqmDz9IXu2etFMwTGyWd17XH1sTf76aJD0wZFfX12/bLf6Xo3bhyctdOCvoAW5mMometl/Qv1Ox78/3+y+rX6WuzvTL2ydEf2ry9bHXbn2e57revhCy2by1Fr7FhKki7outz0etvZ3r8dmPl3qZvY0daem3j5u3tqr4uIkKvviPaFf0u22U/fz5knqdROSBjT2y4O4o4m+v5U7e0Ya89PdL3vFTS4+xm77TNu699h4y9dn5WxgqmBbE+0n1CbvqTor5mnLs+Wceqib/hdk2vz6umD6tX/Lq+WdN1uF7VdbRk5olFKqYcKgXjd2bGvMzknRTkTU1eV76TzJdDNdEVxnV3NT/0RNV0loOiuXaYfsuszfLc93duxueeNUn8Oig3I06S61heMJOZTLYfZyMiJqHr/r6Gzztd3f6eqmYecsUkpYjSNu+laLCtmrVeXcdKM36NWJ/T42k61vVrPPbtt1TWZVuumDZo5g3PJvbhHXPrwB3OgyMiwq1TLiWv+8iivNvVv+eY/jP3Q5eVm/LNCxYimTn/mAx0xzwY+Lo/MHtMw7GOjVI/GKS523fRsd6kKK+OqT3GiOI9g4kZp62GHyeShu6zK2aOX2/7cW2zq89q3JzOLHUiImKuZvqsS2iqLdMX7qn7Zz3Y7MtYu6HPR938KSIiNfsYqamjRcpmblY2422lYP5aVWN44er3WfzlNwAAAAAAAAAAAABg1+PwGwAAAAAAAAAAAACw63H4DQAAAAAAAAAAAADY9Tj8BgAAAAAAAAAAAADsehx+AwAAAAAAAAAAAAB2PQ6/AQAAAAAAAAAAAAC7XuVSE5wfVKJZvjjNKMvtdZ9ca8nYnuZAxvaZWETEvasdGXu6q8/6z/Yym9c5t9WWsWsaI3ttd1KVsYNNXYbtSmLzDjMdP9NvyNiBgvt9y5tOyFjrm2+w127+xnkZ+92PXyNj+xtjm7dVTmWsYWJTnaHN+8zqtIylpnpPVf27qZqvnCzUdeInNnw5jHL9rC+e0/d0y8ymzbs+qsnYBRNLTR2MiJiZ0W25c4u+bvGpLZv3/JmpHX3m7Fzf5s1DP8/RIxdkrFS2aePYuTkZ++/nmzI2t6ZjERFXNScydnTKP2tzXl9bv97cU79n866Z55mt6b7n2rb/ntZNe3T51+7aI2Odvu6TIiKe+rQeIp/e1O3xlXv90HpNa/tre6lv45dbvbonkuTisk0zPw5kua4f2+V7zjB8/TiXrMhYPavL2OJIj/sREYda+tq26a/bBTMk11/PVvWcolX28w1X27cmukNZHfnOZmOsn9WNaRERYzOnG2R67Gnmvu02zC0vJPq9TjevsXn7o2UZ2xjoecyfJh+yed8+dbeM/aMXPS1jnzi+3+b9wLLuG7u6uUXBVNvON1qmfhdMMa2Rqd6DxCfOTO2vl/TDVgraVDnR19ZK+tqquS4iomQepzzRz9JPfTmYplpooJuj/dyiurTT+lIv+8Tunlx/d94vB6M/2dm6rlrWa7qIiN54aduf52YOfiXkeRJ5fnHZuXYSETFtxrx0m3zPKZmxPcKvS/eZ6eq+ui+3q1p63jDf0nPZWsXnzcyzums7NT9PO93V+xubE73+jnCxiGRjXsYejnP22kdCj3n9kVm/lPwkaCb22bjMW9C/NU1dcpe68S4iwnUJbt+kZvYSIiKmTJ2oVfQAXlRH3bhWMrGCYTYS00fkpoySpKBNpfoFpJl7Ob6vTjMzRpsbTgv65E5Vv5vFmh571ut+rr011s+6Mvb3lCb6niplvS81nug5719llpHclGGe+/4uSXRZJCW9R1RKfN+SpX69qBxq+vudF221O/F7gp9XpYKOrKLjSUPvK5c6+n1ERFQXdN1rjHW5lrcKNrqMUs3MV4oGCsdMaPPU9zfJTv82sOi9medJLuVZ7Wfu/J7sbkRSML92g63pA/O+7x/N9lOMzR7I2KwlIiJGE90f9c1ZzdCMeRERg1R/bs/EVka+fzwz0NeujXZ+fuT2uhMzwUoW9dgUEREVfb+ldb3nWFr1abdbAz1n07xTt06OiKib19qp+Lrfqerki2ave6bhx6AZcwZaq5uGUWBi2kbRWY6TmP2Tktl3qRTMi8tizVgqmJ9+5vee128BAAAAAAAAAAAAAPBFjMNvAAAAAAAAAAAAAMCux+E3AAAAAAAAAAAAAGDX4/AbAAAAAAAAAAAAALDrcfgNAAAAAAAAAAAAANj1OPwGAAAAAAAAAAAAAOx6HH4DAAAAAAAAAAAAAHa9yqUmODdMol66+Ax9lE7sdQu1TMYOLq7LWK9Xs3kPDeoydmHUkLFR3X8PYGOcy9hvHJuSsRtXdCwi4tr2SMa+8uCyjO1d3LR5j5+Zk7GH1zsyVqnp54yIqHQSHbzg72l9ualjY13+CzXzmRHRzXU13t/sy1jrYGrzLi7ra/c32jJ2U8fn3VMfylg50eV/34r+zIiIjwyflLFzw+tl7A0LGzbv1TX9PB944rCMPd3V7zsi4uBqS8Zqp/Q9VXQzjoiI6c5AxkbDsoz1B1Wb91Orut2sDnW/VC/7+vBR00cs9XU/uTHy7WKQ6nZxfUfnjYiozJn+sKQ/d7Dhh5RHl+ZlrDvR13aqvgy7A13+y7+3KmOPnDpo894yPZaxg01dl2ar+rqIiO5k+2v7qc55JRxtvybKycVlt5afttd1J0syNlXZJ2P10G0+ImKQbMlYGrpM89BtMyKiZoq1Zqp6x3cJsWjmMe2KrrPjzLfdtbFuC1sTfe3KyM9jBqYZjXyXEBtjPadbzbsyVh37d5Pm+uXcPqc7+7nu19m8J8q6Lj2U/aWMTXI9PkdElM2rqzR0Ab/46rM27/LwKhk7PdD1oei9uZrWKOv5RrXgq7G5mSq6Wyqq+y5aMcGCYoiSmVu5mJuTRURUS64MdWxUUA6XIjW3vGXWMt2Jf9aGqfzTZp7eLHjWLNfxrllK9grud22s11dnSidkbE/pRpv3YLb9vHeSD+MD/UfttZ8PDVPvIiJmzTovNy2w7RpgRBxo6ryHGnr8duu0iIiDs3pt2TJr6KSgiWWp/oWxWZM2zFgY4evzykj35alZy0ZEdMd6nrvSO2KvnYSe66Zmfn1VbdHmPdDSk6ShmW8U9deOq919/2pi3axfGmUzpx/5vafpuq6HdVO+1aq/YVeHE9PO3ZhWyMwLXN3+q9/Y0UfmuZ9wlEs6b8XEam7CFhHlRL+3o22dt1P19WGhptvFR8/49dVaqsemckl/rl91FnH1peid6nZTLvk1n5OXdNtYKen5dLU0a/PO1LZ/5+WSrgufd6afioiIilnUVs040vL1ttTRtajaM/Ug83UkM92c6+Pygv48H5rPNWVY1Iu51pCYNXhUCtpK+RL+5nCbs5bnd90VWmukfl8uH+qXl5vNiLxgXp+bIh6Z+dWmOR+KiFgx8bWxm+f499I388xzZk/66U1fDusjXb6ZuXSh4fcZl4f6WSer+jPLBfUzaZq+x7zT3rrfiDvf1WPMsinfgXkvEX5/ZL5WcMZpznkaZm+wVnBeUCmbeZDpe9xap0hu5nzjgj1rNw91eRt1P5spiY9VP7/o957frwEAAAAAAAAAAAAA8MWLw28AAAAAAAAAAAAAwK7H4TcAAAAAAAAAAAAAYNfj8BsAAAAAAAAAAAAAsOtx+A0AAAAAAAAAAAAA2PU4/AYAAAAAAAAAAAAA7HqVS01wsJFHs5xd9POzvbK9rl66+JrL4Ya5NRk7PFWVse5IxyIiPrXWkbEnNhMZO923aWO2ql/B3fs2ZKzS8OVXK6cyNleb+Jsy/vIvD8lY4x79mRER91w4vKPPLLrf4926jD22NSNjgw/5Oprm+rsh9VIuY9d1tmze+XZPxpY22zL2LUdGNu8bRkdlbJzr+tLt6fKLiGhm+nMf3KjJ2L0X/Htbn+yTsRdv6XK4bv8Fn3ejKWNbQ32/6yMdi4j4xAXXzvVn3jXr39vINOXX79f17Fte94TN+8Sn52WsbOpvRMS5+xoyVq3qdn5uVbe3iIi1se5nb5zR/d3Roys278aSvt//+OA1MnZsS7/TiIiXzOtnvXFKt+NrFtZs3nPrU9v+fGsytNddbndWr45a6eL2f/XUdfa6h1bHMrae6mcY5L4tbCTrMlYy39UrJ/495qa6u/a3qR8zIiLWy/qeJuYzB6m/382Jzrth7qm/86E91oZ+TnE2W9PXlpZkLMt83n3DRRlbaOhy2tv04/dsbVrG5rpfJWP3xr027x+ePydjr3n8gIwdmOravPWyrjCzVV2G49zXpVLovG4eU/Zp7ecOMx1zbTEizN1emqygnJS04Lpshzdc0GVFaWe3W8i1xlHqH8bFx+adNwoqk5laxdAsKwap71sqie5HZ7M9MlYLvx48VN9+fjrOLnlJ/TeSJHkkycXvpLHNmvz5mjLd6nzNr/H2NgYy1q7pgavT8POeZlNfW67pZy2ZPjUiIjdtuzTceU/Urul5zrxZz7pxPyJirq7jewd6jyLC9zdHpvTa54Wz/p2vmPnIg6v63QwL+pq66TPcpWnBALM20nm3TPmfG+g1XkREN9UN54ZpvbaZbtm0Ua3q+lIx43dR3XdcESaXsHWXm8SlgvdWMX1anus6Wtqmf3y+XJ81Z/q6iIirWnos+MQFv776Tyvvk7HRxK2F/ZzYc+3c90tJop81tzMOL8913T++8ecy9l9P3WHzfvvR7fvn/sT3dZ9XpYK/TSubd13T7yOp+7lNNPW1pbYZh8cFZWf2wnOzHs76Re1X1y/bGoom7hUTN9cmlYL35oq/6J27RcFOYxERZp4cY90G8y2/n5Oe032k2ZKOUtv3Y1vLuo4+eH5BxlZGfn5u911M7GzBOc+5nm4bF0Z6H7EffgOqleh5W6Oky3Bz7OvD41u6ki49pudBh+70Zx+J65cq+p76A783f26gzzCK5tROy8w5Fup+zdIxa4As3P5I0X6DudaswYvmg26eOUl1GbozlYiIpYHem3cOTXwfUK1ubvvzyfj5zYH4y28AAAAAAAAAAAAAwK7H4TcAAAAAAAAAAAAAYNfj8BsAAAAAAAAAAAAAsOtx+A0AAAAAAAAAAAAA2PU4/AYAAAAAAAAAAAAA7HocfgMAAAAAAAAAAAAAdr3KpSb4iiNnolOtXfTzu+am7HWlJJexx88sytjSoG7z7m0MZGy2MZSxa/ev2Lzt2ljGZiozMpZHYvMeaur7HQ3LMnbs1LzNe6LbkrGZqn6WA1Ndm/e8yXui17TXro107IapVMZ6E10OERHzNX3t+kR/v2Np6OvSi/ctydj1C7r+HnyVedCIKM3ozz37m7q+NMv6OSMiXnbjGRlbWdPvrVTKbN401WU40cUQL9nju5dve9ETMpab9/b4yQWb9wPL0zJ2pqfLt5eah4mIrbEup/0NnfeOvcs+72SvjI1znbf+2qts3pumT8vYo3+p+6yIiOXNtoylmb6n7sS/87apw4f2rstY84aqzbt5Qb+7Jzb0dWf7ui+MiFgZ6no4XdVl9I87Wzbv9ddsXyc2RqOIe+yll9VLFpJoli9+xlume/a6cab7k8f1a4xS6sfDJJ+TsVrocaC2zTN8toFp27738/e7NNTxtbG+3+7Epo2Nkb7fnul0S/52o2p+YX3kx5f10gV9T/mqjJVLvk84P3B9kW73Ba/cfrNzsaHvaX/vqM378PjPZOy7H7lRxr594S6b97YZ3Rd1KrqWVkp+3Epi5/XFGZp5Qcm0GzemRUSUd3hPmS8G/7kmNjbjXUREWvA8Ssm8l2fpvEXPOjGdWm6uLWpTayPdcZ0d6Xlvu3TxGvGzdSo7W4oOM997lxJdhvuTWRk70PT3e5PosgZpEr/lp3uXVTXJo7rNWrpS8X35lIm3K/odL5r1akTElFljV6v6M8umf4uIKFd9/EpITL9aKvsGWDXlO2P2EhZTv9ZdG+sGutXyc+Sx6TSu7+hYu+DdLI/0Peemj3P3ExFRMYPTyFy7OfZz+kFu+rC+7odaZd9H5aH7jCzXa9L5gjVIx+zXXLPfzLvqO28zmek+3Nq8kKlLidkTvBTlgnp2pT7X+a5r+za+PPwOGfvTrX8rY5PUrzvLpYa5Vi/cksT3LZ3m1TLWG+p9tPFE199n6Yo4SfV84/e777NZv3nyym1/3pv4cfPzqmhyXjLt0F1blLei8yY1M+cv6G9ys6ZNzXo4NWvsiIjMrO3z1Mw52gX9gptzXEIfmFzKuymZ+YG7tuznFVEpiAvped+P3ffBPTK2p6PPGg7c4fefNjb1/lPXzKGWzFwlImJ1pMtwZajry0Mbvt99LLlPB81rm4uDNu+e8mEZa5l23DaxiIimmd+OzXlMUpA3zLlg+bCuS637/bpjnOnPda28UTCPnzFrlkbBGsssPe1Nuf31iIiJ2XdxitYstbp+nsx00L2CPf9PrOpzQXdH62Oft17d/p62Cs4Ln8NffgMAAAAAAAAAAAAAdj0OvwEAAAAAAAAAAAAAux6H3wAAAAAAAAAAAACAXY/DbwAAAAAAAAAAAADArsfhNwAAAAAAAAAAAABg1+PwGwAAAAAAAAAAAACw63H4DQAAAAAAAAAAAADY9SqXmuDU2nS0K/WLfv7CF56x1026iYw9c3xOxu5dm7J5j/eqJtqRkZs2fd4b5tdk7E4T27+4afNO35DKWPeYLqO1Yc3mPTvQ5bA20q/9qhl/v1fPr8vY8W7TXnuklcnYtVN9GSv6hsYhc883Tcoy1hu5uhJRLuUyNj2v7zeZati82eZIxtZHuu5/bNWX78Ob18jYKxbWZGy2PLB5P3V2j4zVzMv5nlc+bvN2/s4BGRt+SPcfTz/StnnvW9HvrW1eeaeq29uz9MO2yrpuT7WHNuuts7r+7p/b0Bfmizbv8n26nf/Z2QV77csX9OdevWdNxs4X9M9ZX5fxeKTb6vi0L8OHzh7W1+pXE3safgjc29T325vo6z5wRreZiIhvmO9t+/Ns8vn9PlqrnEdzm7o7znxbONjUbWx5oN9jasaliIiS+dxKosumkvj7HaT6fkvm2rTgdWyNdaw70Z+56SplRIzM/WahY0XlUCnp+CDTc5GIiGpy8Tzvf3yujo3Dt92VVI+l1aF+AbWyf9aqeVZ36Y2NeZt3mNwtYycn98rYR5Zvtnlv6ui2sa+h5wy1kn9vea4ftp+atmquK5KbsdIMlYUqia77RdzzZCZtUTm4a+114fO6LmLgX7nte3om5vqdiIhupuvhSqLXBmu570hnR3ptNl3WfUurrOtvRMRhM+G7dko/680dPydWdaKX6vK5EmqlLOrbNKjEjBERse01z2lX9aDWrJkBLyJqNT0pqlb1ZyZmrRURkRfMR5SC6rzjz3Rrw4iIRl2X06EZPbdebG0/L3zOwWZLxpY6up1ERDTLutOYq+t6uzTweUuJnkNPmTVV0RzTceN30SvfCj3fOJvod1NJC7bLVg7J0OZY79d0qn4v56qmfm97Ol0Zm2no54yIKJV1SZXNo+YFA3hixqayeedZ6uuDu9+KuTYrmMRnZnwvmfnGpCBvasa8VsUsHiPi7xzW7fyTJ/Q8cq3/lM07Vd8vYxuDkzJWKfm9p2bF7yfIz5ys+V9IdNvIc91nTTLfj07EO08L5mRXRJ5FZNu0qZ1OLC+VWTclNT3fKjV8v5CPdMeQmWnFZFjwTsY6npu5bj7x91uqm36hpq8tFa1vTPkWvvOa7piTqpkL+y3piJLpy8z9ppv+YX/nxKyMvemAfpbpZ/z8e7mr+8f1sS6HpYGvSytDXf6rQ11/1xJ/buL2R2ZyvVd4ffmgzXvTjF7fVMwrdfv2ERFHWrpBll0Fr/j1WH5gr4wldd3XT3/6IZu3+YxZz5h5Q7vi62/bzJnTgvnrMNdl4eYc1UvYILHrqII1SzbSlWI41m11beTnr8e39Od2TR88yvxe8b7G9mcN3Ynfb3wOf/kNAAAAAAAAAAAAANj1OPwGAAAAAAAAAAAAAOx6HH4DAAAAAAAAAAAAAHY9Dr8BAAAAAAAAAAAAALseh98AAAAAAAAAAAAAgF2Pw28AAAAAAAAAAAAAwK5XudQEW+NK5PnFaQYXfOrp2xMZO9DfkLGZlVmb91hPf253oq8bZk2bt1bKZOxQZ0vG5l5Rtnnzif7+wbnz+p7Gmf/ewnRF3+/aWF+71mvYvJ3GUMZK+pVGRMSX7b8gY1ddtypj4y1fhsO+fuftUi5jB6ZMhYiI82emZOyZk3MyduqRts37RLcuY6sjXYhrI5s2Djb0O3fvbTTx5bs0rMqYa1MffPAqm/fLms/I2NmnOzJ2wrzviIhWRb/z1+xJZWy26uvDAxu6bVzVGshYra0/MyJidFa3x8bUWMby9Z7Ne2xJ19GkoK1O1fTntud0RTxcX7d5+yf1u8syfVOTrr9h1x8e7ehrDzb8u3ndkTMy9vD5BRm754IfT37vwWu2/Xk/1e30SpiqZtEqX9xvZLkv79mq7msWG64/8W13zfR//VS/q3Gm23xEhAuXEx3Mcp93a6zLYZDqWK3kx283lpZCB5OChp2ax2mU/DhwOD0gY2sxLWODxPdT49D9bjfVsVHBHMiVcbOiY3tt/Y24Iw7K2JObfyljH0z/i8375LHbZexXb7lGxmbrvs8YZ/p5xkNdDpPU1yVX+lUz7yoYeqyKyVvE9QFu/HBt5tm4fiIXG+nuoTA+KLip7sT0SxN97SDz42E/9Ng/SPQ6aBA6FhFxLvoydlP6Qhk73NZz9IiIV+/R85iXHzwnYytbLZv33z81v+3PhwXv9HJrlNNolC9+Z0n4+lE169mKiSVmrHw2bsM75obhzKxnk4L+IjdzzktRN/PK1oyukwXNLzpbep2xf1Cz11a2mec9x73XSUEZVRO9nm2U9bUtMwZH+LlXPbGjj807HOq5+SDXc5VhovuoiIhnJnoPY7Cu50cHmv69zVb1s650dT/VaOp6FhFRa+q5VdmsoUtl36bcNNLV76Qwr5mnm7lKZubhRVx/ViuYF7h9lc2R3yOqm37rcHKLjK3FUzbvdOWQztt+oYxtJnrvLiKiGqYPqOm63x/5vOOJ3gtOzFpyX0WXUUTE0enNbX++NSnYZLsS8uzZf/66rKDeFsWVoo1a1y/XzFhbL1jTtkyfYtbRZtiKiIh0bPaNzH6C6zMiIspDfb/lpo7lmd9HtKtLM2+PiIiSrp+5ea9J04+JSVu339wsnHL/qLGg08Yw1SVx4syszfv4pu4/H1w35xsFE/SReVa3tzKb6/3qiIip/AYZu6ahrz3c9m2q41+rVLBdFs+Yc7T2kt73PHx22eZNXqrXa3lbz2Xq1z9t8+7/tJ6bbZkztpY5J4vw+w0bYz9v65nx3+05zpi994iIqbruA9x8JR36fa0zF/Q4fXJLt7dn+r4cVod60rc00fPtdN3Pka5rbz+P76fP72+6+ctvAAAAAAAAAAAAAMCux+E3AAAAAAAAAAAAAGDX4/AbAAAAAAAAAAAAALDrcfgNAAAAAAAAAAAAANj1OPwGAAAAAAAAAAAAAOx6HH4DAAAAAAAAAAAAAHa9yqUmODq3EZ1K7aKfHzs9Z6/bs9XVN1VJZewrrj9p866ut2TsQ+cWZKyX+u8B1MuZjPXHVRn75H9p2LxLg7qMbU3KMnawObB5V0b6nrppImOdxtDmne7oz22v6PcWEbFmnnVuSce6PR2LiFjuNmVsz1RPxhZemNu8+5JNGbvvsf0y9qk1/867Ex1bH+l7mqvr9xYR8eLFNRlbmNflcH55yuZ926ufkLFHH9ojYz91X9vm/e1nrpexbzkykrGRbooREXG4rcvpVQfPydj0fN/mPXRK92nt2ljGHn9q0eb94PK0jF1/6IKMJW1fz47uXZGxswN/7dD0PdVZfd3Um/bavHd+6IyMdU/pz9xauXiM+WyLpt86bPrCJHwf0B/qa5tl3d9dGPq8exvb19FhQd2+3CZZEpPk4nvZzPW7iIjYMuOle/L2/599/w62LT3v+85nrbXzPvmce89NfW/ngG40QiODIMAoiqJIUaaSJY1sj+xR2TOe8cyUR1X2jGs0yfa4rBpbDhqXKctBEkVaYUSCCSQIkMhAA41G53BzPDnsvNda80ez5bbO+f0WdG5flo7q+6nCP/fB++y13vy+63Tdr7PjQpfenuo23sn1/BYRUZinak9131pL1m3eYaL3MSeLMzJ2f33e5l1oHO3vEnPf7cJUb0wyv760TJtnEx3bL/3YTcP/rjIp/WBJzLs2Sv2buxNfiQtN/a7/QvKnZOxLoxdt3pvD52Rse/yojD12Sq8RERFbu3pPPOzrvdOgYk/suHm1VpHWlU2P1lUiImJS6MJT0x9GplxVfGi2xAOzD4+IGLmyU99HexM9Nty4yUufdxp68zoOvX/q576PlqGfKTlkfXrbUsWe+Ndu6HXsH13T8/MXxt+0ebM4fF9QlHofeC/U0zwa6cGOkrrJLyJq5jybpUffhLjuY2MVY6Ew47OsGJ9HlaRuHvL168rWZ0xfr5gb6y19Lmr1zcEyIqZjnXwyMfv9iv7QzvS7ztVNu5k2jTj6XjirqMRxrs8+5XRJxnqlv3OpizkhIqIwnb9iyxZD0783zJ3KfM/fm7g+nLT14pOZvh0RkdR0PDNNU/jua1YI/1/xmOUjIvy8lJq+HRX1sGDWw2u7s7bs7aF+o/lSl51p6nupiIha6D5xJvQ9Rb/QdxQREROzL9hO9bjoNP19wX6p86aJvr7uxZbN+5+89OCh/z4u/Bi/J6b5W//7J7nD2vcTV6o20ZleC5Km+WRQ8TxuGcnsfrZqrdWx6cjtG2xa667KTnXhctcnLs2iON3T9VRUbUvNGrNr7ua/ePnwcfS2fTOn/9JVdwfp7yf7pg4HU/2y9Yq+n5nFIjf9u5v6O465uh43Z7u6Ay/4tPa+x31nqLqf3DH9bGD2T5953d/DNXP9UOWMXtfSc/574qm5HRnbGetKrNrHuyltb+o/n66PdHxi9r5z5r46ImJk7mWGE/2b6wM/pp7b1t9r9qZmD+o/GcZersfjIHThvND3VhERhbg3/H6nZv7LbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAsVe72wRvbM1HJ2se+Pc0KW251/dmZOyRuX0Ze/D+DZv3zOyOjH2k0N/6S/+4sTzfk7Gd/baMfXtz3ubdHOtnev/CQMY6tanNe2eUydiv3tDvcrN/yuZ9Zkn/7v706H9L0dqcO3LZmcZExpZX9buObxU2b27eZ7k9lLEfP5XbvE+8546MvfHqsoztjxs277x5phevnJCxS72OzTvbHsnYyqyu3zeKbZt3bXBRxu7b/GEZqyU2bVzo6PqfmdXvklTknWmOZeybt1dk7Pmdus07MEO5OWv6Ut1P3+Oxjvemen6IiLja68rYk7V1GStu6vk3ImK4piv5+h09V7breoxHRDQyXU+ZWYu2Jr4efvP6Sf2bqc77s+f03B0Rcbp7+LjZn44jXrJF31U3h2m0soN1sNr0c2NvqtuxN9H1Msz9Qpubn52EbuPr6Zs27+70hoxNc91WWXpwb/NO7dqCzhurMjbX8Gvl6Y6uXzdNVVSvje9P/AS4a9p1Uui5pqh6KKOe/LP395muln5ATxcxufWEzfuV0HPcjpmn2nN+bhwMdXxk9sQTE4vwe3w359YrzgaurJOXvv+6+KjQsT0z10VE7JlxMzDL99hvE6M31fWwMfL7/16u2zw1PbiIivk50Q+dmL+lbqT6vBcR0U702n8lLsnY9Q2/B1op9HlmmOh5360XERFPZp859N+n5cg87buvXc+jXXEWPEyW6oW2nulY1bm+NGNsehfnQ5e3NGP3bqSmHsqKw0JWmHoye5xs1ud125HcrM8REflA1/9wpM8o48LvkTumnpab+n3q6dHnVTM1Rss/biw29ZzRMmfhtZGfa9y8etge+21VvXdk1onbQ30n0Nr1c+4ZE5vP9NyYmrNWRMX7mDNTUtEf3NRTmgu8ytnhns0f+pn2pr4vNU3Z9y+Ydt3+jH8oM/e0a7qP7rsBF37tnyn03Z47e0VEFIW+c6nVWjLWz/098X+/+bcO/feyrNiU3QvT/K3//ZPcGhIRkZtndWXNXBQRkbT0WuCeqGr8hom7J0pqvk2Kvu7UWVs/cemvOCI1a1faMOfzirO9q8Ri6B9qrK/eYm9Dj4fb27M276V9fd/30q5eY+oVr5qZLvEbg2/I2O7E779P15+UsYfivIy1kqp5Vz+wi50ze4qIiAVzde/2K1X77UGun2lrpMuuu4Np+HOguztev+i/JZx744oOPny/ji3570NLp27q2J7u28Pcz4UuPqnYN7i22Rzr2OWKZ/rahq7jwVR/i6zab7v+nZv91XrFnLVf6m8u9dBrzVNLfkw9PLN36L/3pvr33umfvZtFAAAAAAAAAAAAAAD+KfHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7NXuNsGkTGJSJgf+/fagYcv93h0dW1xflLE/PGjZvE+f0YnnOkMZ6w398+719O82armMfWh5y+Z1ZRfn+zK2vjVj8y41Chm7k6zJ2H95++/bvPM798nY4+UztuxffLAtY2Wpy93od2zeNNGFp5f133ckplxExILpL3lxsM+/bXPUtHlvXZqTsftOb8vY7rbv+29uLsjY6/u67g8bv+/01eurMrbSHMvYR9q+3S71T8jY3kSXe3jWt9v7l7dlrN7W4217zT/v2r6Ob08yGWvpUERELDb0+2ze1L+ZfeGqzdtu12XsZ55505Yd7uqlYfNVPVd+/bd0m0ZErI913gtmvJ2d0fNZRERvot91uaE705OLOzbvpT09z7q/HLtvbtfmzdLD23wcU1vu3XZxP6JxyItc6Pj6fnhGj6P9qe4fdwb+eQozVjqJzpuGH2TTXP/weLqnf7Op582IiBPxgIydzRZ03szPuXXTudqZni+q/ppxYqbOLPHPNDXrxLTQvzx2jRoRo1L3JafqeeupjrdM/Tcr5uuO2TVPzLD5iTM+76+8flHG/pXvfUHGPnjpz9i8f/iEXr8fMeO4kfo5oDD9oSnmt4iIVubbu27KTs2+a2j6YBXXbnsT3882RjrWn7p38fuYffNQm2Y+i4jIQ9dx3Rz70vDvWoR+pkGpzzo7Q79XSVuPyNhKnJexdun3xA+39V57tb0gY//qzE/bvAv1w+u3n9fiq8/Zou+qVn0S7frBNqs627gzU8W0ak2nevJ0Zzw3l0T4570b7l3dM1U9z8TMYfWRzpsMKtrtkLZ+W+mn6yjM3DnN9dw5MeUiItxWZibTD1Wr6GhZop+pZ7bJs3Vfh22zvs/UdHCm7+caN18nZl7NKpYts4TE2lg/b5b4vWu3riux09bn+lqroqPF0caqae634ma9TExfKs1YjAi/4lWUdSambdZG+rwaEWGGecybq8r7O/4OY2A6U8MM5CtTfTaPiHhx9BsyVpqJqT+6YvO6E81oovvo+nTbZm3Wlw79d/es98wkj5gc4dxfmGc1Z59IKwZaXe8PE5e3VpHXxc34TRu+btK2rofSzRm1io2Oe96x+U13mIiIYqjj+Z6fb3pb+m751tasjF3udW3eiz09H7m11nWHiIhrPf2uWyN93i3NOSMiol7qSXClpd/lRNv3UXdXO2/2FatN30fdHmlo9ld5xb74sLu7t7l9227FmdbtvRbN+jMx+/+IiOjrw3LZNt+HHnnQpu1+4paMnbjVk7EbO3rMVMkqzgAtc0/n2vVm39+PXB7uy9hOsi1jy+Xha97bTjX03sFt1bfG5gIkIvYSfcd+slyRsQ8u+LyrM4e36/5U7wveif/yGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7NXuNsHD87sxU2sc+Pf6zpwt9+RiS8Y2RrpcP89s3pmlsYzlk0TGXn9t0eatp4WMffADN2Ws+VjX5s3vDGRs7zX9twmvVdTv/lS/608uPiBjN/sXbN4yShk72fJtc6a9L2Pt+lTGGqbuIyL2pvp3P39bt2s30+8SEfGh5R0ZO3diW8by0v9NyaubCzJ2ZnRwLL1toaP7SkREmuj36WS6DseF7itvxfX77EzqMvbUos/byvTYGOf6XW4Pfd6y9HGlN9R1HxExMfVwf0dPWqtNPy5c//2F18/qvFdzm/dHLtyQsfkzvuxrry/oZ7qix9Sc7g6/H9ft+txOW8a+a2IREefaev742Jk7MrZyf8/mvfmNjoy1Ml2Hs12ziEVEkh5eD8VEr1/3wrO9O5ElB/v9z903b8s9eVbXaf/1czK2PfZbjsJMyadbTRlbyJ+2ed8ozsjY7cZFGVuM0zbv4zU9Pk919Lt2K8ZJZuZyt7okFVOf+9lOza+HZbjk+qnGhZ//Ej10ozSPVPWuzUw/UyvThefqPvGCWSY6Zk+x3JjYvMPxpozluZ6nvrn7N2zeb+7qejgx+z4Z+/+972M27+2h3sPXTP+t2s+5spHqd6lIa3tvYaIDv1TG1kj/cG+qC/dy0/EjYj229TOlfVu2Xuq5suli4fdAqRvnud7fJ4nfE58tH5Gx+USvwafb+l0iIsZmQelNdazu+mBEzNQOb9c0qegs77JmfRrN+sG6VfuL70dpzgO52QNHREzMXnaS67JVe/bEtEdmBn5WUQ8+ry43Nu8SEbHd0/vV1XTPlPRzwuWLeu/dafr1ZX5enx+npt2qTE3bTUzMlYuImJj53BwPK7mxvdI0+66KOezWQNfhvnkZd9aNiNgZu3rSsdmaf147bsx9gRszVdyerawaq6kunJp7qaq5pTBl75UzLX/Oe23fr2uK62cREZsTfS69legz3Uu9X7F58+mujJXh1sSqujdlTbu2Gids1mb98PNtWeYxHF+teKZ3WZ5HmH3iu86Mo4iIaJgzujvLVeRNzN7dl6u476vpNdOWdQt8hXKqx2/R92MwH+g+P973zzQY6hP8nrmL3Zv49d3dAbsqHFecuV4bbMvYTGNVxk7GwzbvI9kpXbat6/Bsx883szX9Qhc6Q/2bFXfzbq11e+pxxfeujaFeJ2YyHStKn9dtSU639Fx18rzb20bEGX3OKxfNN7i6P5cmn/qAjJ2+9AUZu/U7MzZvbtaYqmm0ZfYzjbv4z47dfmVqLtOmpR+sw9zt+XS5afi8mbl1HIQ+s7zZ0+f+iIjV9uFnrP3p91e5/JffAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjr3a3Ca7vdaNbax7493pa2HIfXuzJ2OV+68jPM9zVr9To5jK21BrZvElSylhtUf8NQX5rYPOuv9CQsf3+wXp92+v7ulxExFfv6Hf98An9vP/a47dt3pVT+zJ28dKyLevqcH5G19NM27fNZJrJ2CtvnJaxtWFi8662OjJ2/30bMvbIE+s27+R7J2Xs0t6MjD2U+DF1zYybl/f0uFhs6HaJiDhXm8rYfH0iYycaul0iIq5k+pl2x/pd7/ghFS9uz8lY85p+l+v7XZv3RHsoY4+c1v1hd8/PZy9uLMnYnUSP1f386H+7NL7j+9LVnq6LFT0txU+e9X3/Zk+Pqf/LS7phR4mfA/7X51dlbDjW/ewbz56xef/Rdd12Ty/qcfP4GV8P3cXDx00+1uPpXnhz+vVIkoPjdGfyU7ZcVZ9WGhVd1nXpOVN4tu7zPlrq/tGf6li94nnd+yyYebWV+jk39UuTVPi0USQ6caviXet1nTwzedND+tc7bY902f7Uz1NOGfp58/KIFRwRqdnHDAud99rA79l+pPPnZOxrzc/J2MnaYzbvq7u/KmO7w6sy9jcv/rjN+7Fl3TanWmMZa2V6b1plmt+bdivNuOnrLUNERAxMHx3m+l33S7+mDdK+jJVx9HFRmLKFGTMREf1kV8byUldUozZr8z7WXpSxmbpu8+/s7ti87dALw7TQG5nnEn80PtE6fE4bHr1rH0lWKyKrHWzPpGJ9Kc08lR8xFhExNmexca5jVXnN8hL1VFd6LfPjJDP3FIUpulVxR/FLVxdkrHV5RcbuN3cUERH/1yvflrGfmnnGlv2LD2/J2ExTz9dV9qe6cXpmvh5VzOU7Ziucm7ZpZT5v22xH6maN6Nb8mJpv6N/dNdVbtccZ5vp3R2bDvNry9dBt6ArOzLuaI+lbcfOztmzFkpaY/Wdp+lJZsSl2z1uafWJZ8bzNtl4Pnz61ZstuX9X3VntTvTbtT/1m5c30dRm7vPsFGcsLvReJiCjjD3jhi4gk1XNwq6H3ExEReXH43qss/+DfI6b5W//7p5WawXTUA+TdlM38OS/cN4F79S5TM/aLijo3j1ua+8li4uebwpx3i4mfXN18VDd7vm7Nv+uqudPr1/QzXe37tqmbT0z3lU/K2Kl03uadqbqYEUyzRUREzbzOrLnrXprT37MiIroLegNQ65p1reLsOdzW9Xt2XZ+5zrT1d4aIiH2zj3/Poj5ztZ9o27zlomlXNwdMKvanTd2B6+87JWMnv6XPsxER2xv6zqaqBzbMeGxWTJXOTKLftVnou8yZ1N8/tc04N1vQaFWcledK39eUb234ebSRHt6/B7l/z7fxX34DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI692t0muDNqRnvaPPDvrayw5T5wYkPGzs3tydjt/a7N+71rJ2VsuT2UsVPLuzbv+taMjL325QUZu7g7a/PuTDIZ+6MfuChjfyjX5SIiXtlZlrGFum8bp/veg239tgdT3aYRETevzh3pN1utiY2P93Q3rps/77jQ9fUwX9e/u7vZlrEzD+p+FhHx+BN3ZGzw/BkZu9Hzff9zt/TLXhnoMXW21bF5V07pvCPTDy/3/fRSlDr22Lz+zffND2zeh5e2ZWw81c97a6j7dkTECTN/3Fifl7GvmVhExKRMZOypOf2bT5z0423lCV02SfVvRkQ8NKfnw1PtuoydXNL9LCLiTl+Pm08t6TlrmNu0UYQey1++vSJjVX/99Z4FHWulugM32lObt3Hy8PpvjHy7vNvO1p6OLGkc+PffvKXbOCKiNz0hY/tT/Q6dyh2HLts1ZWdqZjKJiEWz5nVrOtY0bRwRptf5+S03Yz4iYlLouJsvqvJG+Pc5qsT8bFHxTKkZhXUzT1W9ifvV3BTeGvvMg1xnzkxFZBVN84Hllox9uv5TMvb8lp8cXy7HMpYXelD9vb3P2bz/w+amjP0HD/4JGfsXP3zN5t3b0PXw5vqijLlxERFRN2PZ9YeRC0aEW0prie7b7dLPsXmxIGPN8GU7h8zpb5ut6zZ3/TciIh/rvtap6f39JEY2b7umf3dtoH/zTnrD5nVzy+5E7zd2dvV5LyKilhy+jxkd/Wh1JElaRlKxRv3TcvP1NPc7pkmh42NzVpia9S4iIk2O9o6FXQUi8okeR2sDPQ89v6tjERGf3dJn99cHn5ex0UTPqRERZaHn8v9urH8zIuL+Wz8nYx9a7MnYtb5/142xbvOJGQ9Ve/re5Ght3jP7z4iIhpmwO+ZapbyLYTY2m8Gdqb/f6KR6vm6ZTcXGyI/VXXPenc/1Gbu8R3Ncche3kYnb/1c8r3uf0vTRfHL0vXar49v8MXMHWpT6TnFr3o/Vb+9syVhe6PuC0lXEW/8PE7ubM60uWxR6ztruvX6kXyvvZpAfVZ6/9b93lRn7FXc/9uB61FhlWT0Iy2nFAHbj1+xXK+cF87tFzzyvXqLfKmuuhqq6X5bq323XdOKlhl8LTjb1Q7dqug5na36f/OauvlveneoJv+IYElNTUW5f0a/YG4zqR7tbqZk7pIiI+rx+3tq82XRUXBo0VnXe2Qe2ZezBqY5Vqa3qfUP6mP5+ERFR1vV+O9kzd8dTf58aA/NNoK2fd/XBfZv2+o5ea6vutZzlhu4vZ9wmNCKyRL+Pe6Klpp8D2mb/tWu2K1VrZt2cCVPzxHONirOb+NmK65p3/DYAAAAAAAAAAAAAAMccH78BAAAAAAAAAAAAAMceH78BAAAAAAAAAAAAAMceH78BAAAAAAAAAAAAAMceH78BAAAAAAAAAAAAAMceH78BAAAAAAAAAAAAAMde7V4lfmWvbuOX+6sy9pNn12VspTOweb+5tixjt4ZNGTu5sG/zXt/vytjlvs67O01s3rOtXMZG+7p52o2JzfvovI7V01LGru7M2rz37d6WscaKLRq1G4WMvXJbt1sz0+UiIt7c78jYQl2X/fiJTZv3zOqujO3t6jafbOg2jYjoPD0jY0+PbsnYL3/nfpu3N9HvOpfp552pV/0NjM67O9V99M7QZ7090PV0spXJ2IcfvmHzNhd13m88e0bG/u7lqc17sbckYw909W9mfgqI852RjD11ek3GTv1M2ydOdXz6su/7y/M9GRtu6MnlxesnbN5Jofvap0/oDrM19ktVM9Nz2s5E96WZuh+rF7p6vXGjJh/p34yIKMeH97VyrN/jXlgtT0QtDs4NvYl/jtsj/fYNUzHNiqmmZrYNZkqImZp/3jnTzosNPe4bqe8feakH9zDXDzwy4yAiop7qvJNCxwrzPFXSxNdhZuLNVL9rWvE3lu5dl5o61jJjPiKiZ/Zed4a67Mg3eQxDl22YdzFVFBERbhl273pf1ydubut1a5rrOXdj/yWbd5rvyNi//r1/X8b+wo/+nM27+ogej+3n78jYr7503uY1TRNDM6bmGjZtjHLdcJNCt1s98e3WLvUPL2QtW3a+oXNfG+g17YXkGzZvPdV77cVS762eaV2wece5rqfrE3026ydbPm+hy+6meq+9k5yyeZ9KHj/035OjT79HUhZJlIf03cSc8SIiCtPfp6Y/j81+/6247ndu75eb54mIyOz76PNJXrHO3uzrPfLn7+gx9tyW3h9HRNyJ12WsKPT8liQVVzLmdYZjPxa+dkcvbNtjfSYd+GNRZOaZaqZZ72an624ExhXrd8+8TxlmXPhriOiZK5neVD/UsPR3OfVSV3A91f1lWlHBL2zPyVhpyp5Z1vciERGd+bGMZU2d2LzK7/8fKuJH5Gae0lRiWdEfprnpS1P/MrMtfSdwbqIPSS/v6XEcEdGf6nN/lur5Ls/9JODGjW+4iko0ktBrTS3T+5SIiLxQ+97S9v17YlocPrm4DWtERJiJzuw7q/MaLm/uJ97SzIF20s59HylN2XKky5Zjn7fQ01gUI10PxcTXb2HmhcP2cu+Umn1Qu67XkUbm22Zxtq/zzuqKWNnw+6C18WkZ+91besLP7mIj7YZvVddvmvqtp7q/pBV3EZZ5psRdekVEOqvPiMmyWQvm9fesiIhomkNvW68T5bz/flQ2zAXfSN9FJObMGhERPd1/ncY5f7g/++aejN3c9e/qzNb1etpK/TMtNPS4McfoaFf0UTc23F3aqKiYn83Pzph7ihMtP1hb4rvg9zsS+S+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHXu1uE3RqeXSy/MC/19PMlrveT2TsjZ05GXvyxIbN+/jcnoydXd6RsaUnJjbv0vpIxnanuhpPNkubd1Toevj2lVMydqrbt3k/sDCQsb2Jft71UcPmffELizK2NOOfKTfvOt8Yy9jO2D/Ta/u6rz3UPdg333Zmddfm7Z7XZbe/q/9u5Nqr8zbv6r7uo29cXJaxTFdfRER8YlXXw7jQbb6jqz4iIi73dd7HZgsZu3/G9/0HZ3Qd/tSFmzLWnNftEhGRD3RFTQr9m+9batq8Z9rmXc14XJ3p2bz3PaX7Q+PBrozlV3W5iIjp+lTGdq75d93e68hYmuh2LUrfSU+0hzJ2ZV+/6+W+X6pq5s+45mq63fan/u+/tsa6Hn78vO6jrUW/nuxfPfx9ehO/br7b1pKNyJKD8+tycc6Wc+Oonen+0TKxKjM1XXbWtHFERCfT8W5Nt1XDlIuImJp6qBoLTm7K1hMd80/r/9qxkfrS7UP2eW+bmuft1uo2747p8zOmXZcafozdHup9g1sPt0a+jzbMQlw3FVyr6A6F+dlhrgu3KqaMf231X5Gxr+6sydjt9LLN+2DxmIx9t/iCjK3+f79l88419NyzEudlbCO+ZvP+tYc/LGMPdnVfOtX0a8SLoRtgc6TX4FGpYxER24le31/Mv2HLDve3ZayVLchYWvH30BdMm6/W9Pq92vZ5X9vR9T8JHWsnfq/dzGZkbBr6TLdVXLV5N4aPHvrvYzeI74HJJIvJIf0vq1q3prrPTnPdVuPcTzbjQscn5vxXtVZmoevV7Uf75qwbEfGtrZaMfXNLnw9fS56zefNc963V7tMyNii2bN7+eF3GstSfk69N9f1Ht6fP9XMNP3aPumOt2h3VUv3/yMujjzNXcmiOlpOKzVU/15nd8xb2iSImpf7hkfnNqRlvERG75uzzyu6sjFXdxzw80X14blmf/+oVe/iKK0VT0NdD4rq3OSYn5jwSEZFvmvnO7OciIrJU554z+94n5/ye4szme2WsU/u4jG0mt2zeK7u/K2N5Ye4FK+b90owNF5tMt23e5JAzb0REeRfzypFN87f+90+q3c1dgJnI/PWZN9VjtDzsHd5ppPttOdZly7GfF8qp6SMmVgx9Wxd6CY9iovvtdFTRpyvGvlOv63qar+k7//asPyu3Thyt32c1f7f5vk39TN8ze6+xWdciIjJzB+Luyd3dVETEXF3Pnw1z/1FWrLWluWMvJ2ZvW7V2LeozV5xZ0b+5tGDzRrutyzbNotjSbVppYNaJse+/ycgNVlO/8/4efOmk7t8Tc4aKiMjN3aC7P82Sqls8Xcd9c3ar6Er2W+SumYMvFXds3r1Ef7OdH52QsYXRGZv3fOfwds3MefCd+C+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHXu1uE+xOspgU2YF/X6wXttxyQ8daWS5j/ZEpGBGPPLguY1m9lLG151s278aoKWOztamMrY/qNm8ZiYwNC/23Cfed3bJ5n/oxnbf/JV1Hv/bNB2ze5zbnZexUv23LnmgPZWxlti9jM+Oxzfuk6RMLdd02aUUfrZ3V73NmvCdj+cCmjcGm7hO3B/o3L3R1HUVEfPCE/uFfu3ZSxr68NbF5V1p6mvjMiZGMPTy7b/Ouzuv48iO6r0y2dd+OiBju6uddaurn/dlzOhYR8eCFDRnbXOvK2KVtPWYiIh68T9d/8sGHZWz/P/+uzfud18/KWJroubDKGdOu953ctmW7J/S71l/W8/61wbLN60byBxb1WN0Z+/XkUl/P+8vnejLWfrJj82avHz6WpyNdB/fCIOlHlhxsk6q/ikvNEMyP3rWiaX54rqZbec7M8xERHbNGNzKdt2XKRURMzBo9LXQluXU/ImyHdiWr2s2VraW+4bp1PXY7DR07Vfp33Rjovdesydtp+H1BI9Vz8qjQ47M55+thmOv32ZvqFhiZ/hAR4X41M/P1vN9ixqmWLvupE3pt+vztZ2zempkEfqLzUzL2128/Z/Ouj1+Vsf24JWN7g6s273/z5odl7Gfv0+02qei/+xNdv9PS7zGdjeSajPXHa7Zsq7YgY+8JXQ+NiiNhKzt41ntbXup6eGXHj9XdXO+9CjMZzpd+X7ASCzJ2uqXX9l/p/6bN+83h5UP/PS/9e77bxtNajA9ps2Tq57DczEV9sycaTH3/mJi8hRlHd7MfneR67G5V7O8u7+u+dSu9IWOj6Y7NO1M7JWP3F4/KWDPx9ft6+zUZ6xX6fBIR0Q5dF61Mt01LD/mIiJgz60/DbEjGFVOj22OOzRqcVG2tTFermbLuXSIiOqYO64kuXI+KCjb6U12JO2NfEa7Ny1I/U5b4MbWwp/ddrZbez9VavkOUrv5NrKI7RNIyfamuE6dmXxURUU71WW7UP/p81zD3o+e7/vLpT608ImNfX9N3LsuFv8MYzur58Mb2l2QsqWidJNGTS1mae6uqfVdVp/gDVBZllIdMSonpPxERkZpOX+j3P+y3/mdyU3fumSrylkNzljb3HuXQ10M5Mu861s9U+GvPKCZmL+OvBTxzzs4q7qSzpq6L1qIu23jY30clbTPOBrqi0paeMyIi6q/oZ6qbBX5S1Ufdb5ph4e6XIiJqZh+amwVoMvGJXV9yfbQ06/tbcd0fEjMH2LkjIsqmPhtFV6/vZct/R0vct5zxXX+O/KfX8Huv1qpum6W+/x4zGur3GU10rKy4b3B3jtsTPY6H5pwU4e+nllu6bLviu9+NQt/Z3J58Txfc/SGb97G504f++8CcDd6J//IbAAAAAAAAAAAAAHDs8fEbAAAAAAAAAAAAAHDs8fEbAAAAAAAAAAAAAHDs8fEbAAAAAAAAAAAAAHDs8fEbAAAAAAAAAAAAAHDs8fEbAAAAAAAAAAAAAHDs1e42wat7aTTT7MC/f3hpbMu9/8SmjN3e78rY5b0Zm3f39YaM1dJS5+11bN710cF3fNtCvZCxLLFpY74+kbFObSpj7RX9mxERyfKsjJXTDRnbn/q/hzjT0u361Ok1W7Y30G1zbXtOxk50ezbvx8/elrHhWHfxtdu+Lw0+P5Kxxft1ufYnVmze3b+/J2O3R3UZW2np54mIWF4y9XRNh9o13bcjIh6c1X3i8bO6zWut3Obd22rL2NqrOrbbb9m8WarHRlHqAdky463Ktnmmz932c0vxd3TsBze+K2NffOm8zft3L+t2vW/Gt/l753VdLLeGMpbnfv7YvqHr6czqrox9dOqXqm9u6vnDtflS04+p62bOuvTakowt3hzYvI3m4eO8N9Fr1L3wePJg1JPmgX9/ZN73j5ZZSydmaZqatoiIaCU6bzvTiVsmFhHRMHNCan6zSt3kbWZ6/hsXfpyMSt3fJ6YO84r6dfF+xdhNQtfTrFmbWg0/r24M9Jzw/Na8jG1N/PNe7+t3/cufel3GZj+s156IiNFLep199rnTMvb6vl8HXP2Xpoueauk9ZETEe5e3ZKxr9nOn2ws276TQ9evWiNXmUzbvf3/pYRnbjb6MXZ971eZdbOgx9dUN/S4X9/W7RERslfsyNhe6zffDrxHDYkfGTjXfa8t+ovm4jK22dT+7PfDz6KQ42lw5mFacV0LXf2r+RrtW6v1yREQr0+vY+Rmd96Ojz9i8X5r++qH/XpZ+z/tuG45rUSsO9uuk4tw5znW9DMxea2jKRfg1ombW2aRiDXbdbnei92hX+joWEXGtr8d2P9mWsW7tpM370ez9MjbT0v1ufejXyqaZTyaJn0/m0oP7vLed6egOc67t+3Qr040zMmtE1X6jnpqyppryiinK3cnUzSM1zJ73rbw68e7E7Ocq5tzCLP7DXJe9NfDPOzlk3nib2yee0N0oIiIaZt9rn6df8d/i6KU/ylw/b3PeP09m7jeShnmmirUw6+q2qZs7wwh/h9Gq687fqLjD+OP36X36g91FGfu1GzZtnBzrPdvN5KsyVpZ+72o3vq6YWYciIpJQ9fsHe/6OiIhpHjE52G5lWvXfppl+PTWxsR8P5cTEXZ+vGA/lVMfLof7NcuCftxjqvIXpXsXIb5KKI14H1poVfcitI2a9rFI/o/c66ZkFX9istYlp12TW7zme+/v6W47j1rWIiDTRY6Pqm4vTN/vb3kSfNcqKexfHjouKvl9u6UUx6er71KRZsYibeNnR9yPJ9Oh36FbVXGj6g+vbUff3ytmibvPOnv/Gme2Y74Jmzzet2Bd3zV7S3Su6+5qIiNSsfTM1XXY1098aIyIu5m7c6Hp4bfwFm/fvXf2jh/77tPR3+m/jv/wGAAAAAAAAAAAAABx7fPwGAAAAAAAAAAAAABx7fPwGAAAAAAAAAAAAABx7fPwGAAAAAAAAAAAAABx7fPwGAAAAAAAAAAAAABx7fPwGAAAAAAAAAAAAABx7fPwGAAAAAAAAAAAAABx7tbtNsNiIaGUH//09izu2XL2Wy9go19/kR4X/Xv8/XJqVseVWImNPz49t3vMdHa8lpYzdN7tv8545p+tpZ70tY2uvd2ze8UsbMvalmw/K2KTQdRQRsdoZyFi7O7Flv3fzhIz9xi39ro/NdW3en3zguoydPr8nY6++umLz/o3XTsnYo2/q/vuHr161eb985YyMbYx1/378kTs2b+fJpoz98B3dH94z5/vSEyd12ZX/lelLX3jN5r10Vf/urb7uD5tjP23N1AoZa6Q6ttQc2by7m/qZslTPAStNHYuI+FuXWjL23V96SMaGuR+rK/pxI/VFY7Wl57u81H3077x83ubdGOkfft+Cnj+GZk2IiPi9O7qOX9+bk7FnlqY279r4kMXt9/1Xr+v5Y6ZiZf3ps4fP+72p74PvtqVGLRrpwYdtVPxZ3NCsExM9xCpNTVmXNkv8j6ZmjXaK0g8Ul7eW6WdK/VIZY7PP6ZuxUDUnrJv+/MqOr8PBVJe9MKvX6KqxkJumOWxv+bbnNvUaHBHx0vi2jP3Jy8sy9v5P+8ZpPbMgYw/d3JSxzXHD5q1P9MvWzfryoVNrNu/Sqb6MJTWd97GOr4fPv3afjK2N9F5kpenz/sQZvS8439F1+Ffe0PuqiIj/cfcXZezPLv1JGXstedXmbSUzMjYq9Xy+l+h9VUTYCa9d+j3xa4NtGbsz1PXbzsyAi4hWpueeLNFzT8OUi4jolHUZq5m5MEt83rqJu3nnQyu6/0ZEXF37oMg5jq34ji37bhpMa5HFwbpLwq93uVnXcrO2V+V162FyxDU4ImJvovvH7ZGOvbDj18PL6RUZ68SCjH28+ajN++ceGMqYu9/4L17zz5uVejFdinO27GJDl72vo9fSCx39LhG+zbfNmlev6A9u7LbMAaZfsQcqzM9mpmi9Yk/s7oFWzN1Tf+o3SBtjfRbbK/R9jJs336LPnd26HlNVe+JGTZ+pctP399f9nLtt7gR6E12H5xd3bd7Vrt4fZW4DWjv6fzuUmP1chD87ONXnFd02j8/pu7Ivrc3bvGfH+izcW/gpGXt9+5dt3rJ0e/yjHzTT5PB5qYzC7gvuif4koqLd/mmVE11vZd/feZSjI9armzwj7MRbDPRv5nu+QaYDs5eZmr1MxeO6rWWa6WdK6xUdyOQtKq5/xvtmPnpDn6s6Z/z3jaSl53u7YLpYRCzUdbue6+p3mRb+HDJrLqjapmhVz3b3jMPcP5OTmP7ilFNfrhzosVxu629Ptr0jIho6nqS6jsquP5eGKRuFaR1XLiKiZtrG7HsTE4uISDo6Xpv39xhFbuZgc8aqD/29Vt18w3DfN9wdUhXXDWfrflycKvRZKW3pdt0b37R5vzz8u4f+e1l+f+sX/+U3AAAAAAAAAAAAAODY4+M3AAAAAAAAAAAAAODY4+M3AAAAAAAAAAAAAODY4+M3AAAAAAAAAAAAAODY4+M3AAAAAAAAAAAAAODY4+M3AAAAAAAAAAAAAODYq91tgtlaGe2sOPDvvXHdlkuSUsY6tamMDfLM5l1sJjI2PfiY/9jp9sjmbaS5jLXr+nlXT+zZvP0dXU8XN+dl7NW9js07LnQ95Lrq4/7u2Oc19X/jln7et55J/62FaZoY5PpdIiJmlnTbdf/CUzL29O+9YvP+6s8vytjGWL/L7148a/P+xk097Fz/LV0lRUQ51v+HWdO/X9z27dbqTGQs/8ynZCz5vddt3sFU18PeVPezS30/bQ31ULV9/8k5n3di+q+bs56eH9i8t4d6LN8Z6nI/fqpv8xbmXTcr5mdnaNqmSmqGsnveRuo7/2Pz+n1WW7rsMyc2bN7hrRUZ+42bul0f7HZt3lbt8E46DdN574H+tIxJerDir/VNY0REwzRky3QPF4uI6Ju5vmf63WzN/x1f/ZB3fNvETApF6dee1OxjcrMGV5ma6u/n+l13Jv43b5up6M5Qz/MREddLPVZub8zJ2Eq9ZfNmiX7m+aZ+1zdH2zbvdnpbxv725Q/I2P2fe9PmTWp6Pnn99ilb1llp6vp3/bfT8Xu25Ih/4po1/Jx7qmUWJ+PC0o6NPzDX1M9k1oG/NT9r8/773/s5XXbrl2Tsh5o/Y/M+PNeQsa9ubcvYZlyzefNC79m2a7pvR0RME70fqRd6n9OOts1rf9Ms4Llb3COikepOWjcd2M0dERGNTMe3x/qZTrR83qebZw7993ExiudtyXfXaJpFLQ6ui+58HRGRmbjam0T4PVqE3yOPC71+70383vvVfT3GvrGm+/pr+XWbtxN63XooOyljP3zKV8RKWy+0L2/r3+wVfk6dpHpOmC/0eTUiom72bE0zr7o2rWL72SH3Rv+zZ8rMmmf2idnEbzKH5mfNdGFjERFh4m7f69olImJc6v7dT/QZsFnqdTQiYlzoMTU0e+Ltie8P6z19nt0e6PXlSs+vPTeG+ow3NP1hbeTr4VMdPUfMNXTdp13fz4qROVdU3Gk5dsmrmJ+duhmPH1r2ideGui7qha7/NPVng6LQe9uy1HNhmvq+lIt5tizvogKPqOhPojjsrOgurCMiKs68irsnjIjI903cbACSxtH79GRb5x3t+L3BeKT7XmHOypk5x0VENJpmH2TOY9OKY1Fp7gVGZhxFROz39Vhav6rn3Ye3/T3XzFl/9lc+/+XzNv63Lukx+kfO6TH60CnfNm4NdyYV5dz+dmT6kmvTiIgjTytVG243Rwz12hU930mTvX0ZK+t6Ha6aAVxZ+4Ej8+OibJhncr/Z8HmTpp57krYvmzXN3qGu37VWsS9umW8NLfN9zsUiImbMetIwS427C46IWC4XZGwr1XNWUZj+GxGT6eF9tKz6UPb7+C+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHXu1uE+RlRF4mB/7965vzttx8LZexc52hjJ1qD2zeP3VhX8Y2hi0Za9emNm+3MZaxuRn9vFVevrUiYy/tdWRssa7rLyJiqTE50vMc1pbvtD5sytjMNLNlT7R0PX36hP7dbkXbNBcLGStPnZCxpPumzftHz23IWLuu6/fq7pzNO8z135y8savf5YXXVm3eZ87dkbGZWZ33t77tp4FX9h6Usf/Tv/fzMnb927r/RkRsjhoydl9Hj/N6Wtq8r+zpvLtmWMxWjKm1ke77uZlb5ir677mOfp/SvOpqp2/zurKv7i/bss/v1GXsyTn9Pu+Z9XOhm19c7Gubuu4jIl7f1W33Q4/qerr/mV2bd/g1PTb2pksy9r6Fns072xodHpjodeZemBRFRBycG3oTvw6MzRh07djMfN7C9Nl+rssOc7/2pOZnJ4UOFhXroXtX95tJ+DnMzXGujqYVz+u0Ul+HmVnf90PP1+tTvY5GREwS3edXxiePVC4iogg9Jzy7tSdjf+VLer2LiJiaBshN27xnwaaNR80+0u0ZkqomN33JlS3NeIuIuG9Bz53Npl4jajW9F4mIaLX0Ir2925axccUc8H94j37eP9n7aRn7v73m++8T6WkZW09vydi48Ot3K1uUsTPFQ7bsuZo+f2W1o88Rbk5zfb+onO90/3ZLRlbR+etH/PPuimUqPrB8+P9hmEf8nbWj/eZRTMvk0Dm/8mCf6PbIEjc+fYW6dfjaQO/hrvb92H15W8/lzxev64IV7fhIPCBjHzupn+mRWb9v3B/rM8g3NvXe+s30OZu3PGSv9rbVmp8TnlnWbT5f1/P187v6bBMR0TZNt2TOVLWKc1wr1e/aMt2w6g6jmB5trmlWPK/bl7mOOHYTZ0SMzT7GqVfMAm6/1zAT/d7U1++zW7MytmPOFTf6vh76U3NONuvLzYEeixERTbN+fyRuytjMff5cP93T7zoZ+/kuL3Qfzd15xZSLiJjYfaSuw0dn/F7lpZkZGXveXLoklf/9lZ4DkjD9t7Zgs36s/ScP/fdpOYrf2/1rFc/07ir70ygPazc/HOKoy3Q5qZhvNnUsN3NnxfExCjON9Xf0GuPGwltxPR6mpr/ng4q+p4+I0R/rNXzd3AVGRAzd2K5Yu7bNvPHrN3S7fuOFN2zeVujxu57re/Kt/uds3nrWlbGXbzwhYz/Z/bDN+9SCjrXNvqHuDjARkZk5sGPucbOKM609Z1eMc8v9rNmQlEP/fSjp6fucpK77ftWrJG0zNswZMEpfv5GYsg2zDzLvEhERLR1PO35/lTb1hJdm5vyV+XdtmG+nnVz30UnV3sDMPYsNXbbX9nm3x/rcN8n1vmI02bJ5c3F/Un6fA4r/8hsAAAAAAAAAAAAAcOzx8RsAAAAAAAAAAAAAcOzx8RsAAAAAAAAAAAAAcOzx8RsAAAAAAAAAAAAAcOzx8RsAAAAAAAAAAAAAcOzx8RsAAAAAAAAAAAAAcOzx8RsAAAAAAAAAAAAAcOzV7jbBY7PD6NbKA/9+c9Cw5TbGmYwtNvRjPbyyZfOuPDGUsfkX2zL2vdsrNm86aMlYfW9WP097YPOenunJ2HxjLGMPPbBh8964Ni9jv3pdv+vuJLF5P7Kk67eR5bZstz6RsbPJwT70trz0z3TjZV3/F/7Bl3XeLV2/ERFP/nQhY0m7LmNnn7tm887VT8rYf39pQcbWRvp5IiLGt3QdTqf671wu9vo27/W+Hqvf+71lGdscNW3e13t6jujn+nnPtHUfjIhYMuNmc6x/81zH10N/quelb2/PyFjW1u0SEfHx5R0ZOzmn54eFE/55B3u6j+a3dbtFROzqoRq1VL/P/fO7Nm+zPpWx/aHuL//gmn6XiIiXJnrMlaV+18mWb5tbvY6MLTf0fHf/om7TiIiN/cPz7k/9XPduW2ll0UgP9uv+1NfLwMQLU7RT8+/XMH+ONyl0WTdfRESkZn0pSj2/bU/8FslV02xN9w8Xi4iomed1LTPxS0TUTDUtNHU9REScKhZk7E6hx/3J0u+tJqWuizONrox163M27xs9PSffTu/IWG/Hry+jZCRj7VLvMXfHCzbvKzt6j+na9frggs37049dkbFGU9f9oOfn3NSsA05ZUaww+71prvvojb6eqyMiJibv3kTnHYXvD//V2i/LWCfTff+Z5BM273JT71VKOwtEzNT1QB/nuuzYTd4RkYSuQze3ZOnR/846S/RvtrKK9cTEXcme3qZEREQ9Pbz02KxRf5BGha9vF9+d6HE/NOMvIuLmUK+XX1vX5V4Z+PPszfSijBWlbqyT4efG5ZZ+16fn9dl9runPjs9tLMrYN7f0Wtkr12ze0qyVacP3veWGrqeJ6Q/fXPebirMd0ydmdayT+bwLbX0Iycz+aFjR99064Ka/tGLOzc2M4tbvYe7rIQ+/V1Q6ib+DW2nrtumabW/Vqr9j7pA29dYptiruN7Ynuj8U5qn2Kvbwvx1639XPz8nYh3t6DxkR0enoOWI89s80meq2mZizzrhifh6bvKXrv2XVeqLrv1/qO9syfJuXpW7zJPS7/Fj3z9u8/4sHD3+ffp7G733HFn3XleMiyuRgPZQVZ7lkrP8PxVC3x9Ylfy+339fxZl3PRXnF3kfdeUT4fUWr4l45O+I55FZfn9UiIr68oeeFrZG7r/a/u2vabW3szxobid5EbST6DmyQ++8mN4bfkrHh+LYp6dtmMtX7uism73+59Tmbd3nnaRn7U/N/RMYe9VcGMW/uas8v6H1bZ97vBxMz3ZvjzV0pzb4imVQccHqmH5qzXNWrlLn53bq/b/CJzWSZmLXLfGuMiEjqZr2suC9LO/p3U3N3XHWvUjP75qa5V+wUvs3dGWCupt91ztRRRETd9Jcz+WMytl27bPOOpofXQ1mWURR+Ho3gv/wGAAAAAAAAAAAAAPxzgI/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjj4/fAAAAAAAAAAAAAIBjr3a3CbYm9RgV9QP/XkZiy51pT2XsdGcgYxv7HZt39F39Sq9sLMrY5X7D5k3960j708zGP3BqTcZWT+3KWGOhsHlrN3MZG+T6ZXq6Wd763VT/bqumfzMiYm+s6/jGoCVjuxNfh1vrczL245/dkLGHnhravPUfe0AHN3dkaLS3b/OenOvJ2J+5oNvmzMKezdvbOjgO3zYe6XHxL96v6z4iYmOs/0amN9Ed5tqgafN+d7OUsbWOfpc18y4REast/UwPzeq2SRP9PG/FdWyxrsfFQn1i8y7P9GWs2dJlxz1fD67Nn5zTc2xExMNd3eYfOHdbxtpz/l2H+/qZZmZHMvZvvcemjYu7p2TsoZP6eXdu+b5/a6jnrEt9PS+dWF+yeWvp4X2tav59tz00G9E65DVe2/UL3sZQ9/fEFB35JSJy06X7Zt3aq1hn7W+WOu+dkf/7wHFhnqmmy3YyP3YnZnnfnpj5uKL/7E/0HDfM/Z6iKHXZbuhxtNzwY6xb03X42Lx+17F/3Ngdt2XslnnXi+WzPrFZJlrpvIwV44ds2uFErwOtUu97J8WyzXuyeUbGzpi9diPzg7XTGMtYYcaFmx8iInJTtjfW+4KqOWBi8rox1SlnbN5pqevhvfF+GfuZ+/yZY2+qn3fHPG+En2eHZiMzyv0eaFLouAlVngedhnneRubzNkw1meksdse+HvqibUYVc9K7bVhkkeYH+/0g9/3Dnaluj3Ssan15bUf/H740/ZqM7Uyu2LxZqs8SZ+vvk7HT4fdhJ9u6nuYbei9bmD1DRETP1H9hFpBx7s+Ok6leI34rPmvLXnv9kzI2F3qt/MLgv7V550b3ydi/nP4hGVtqVs3X5k7AzI0VU0IsmLPa5lg/07Bi7+pmjD1/LLKy0M/k0k5K/8CDqX7iuplzzbb2rbip/4Zp8qq53L1sataXZuofeGjWvIs9vd84uzNr855N9H3NqOJOazTR54PxIfP9Py5nYhERA3PA2hrr2Iu7fq/yrV19z9bL9R1nLfX3uYn577NWZz8gY3/1o1s2730fOLxtdkfjiO/You+6Yhxx2NY0qRhn057pty/pde/vXl6xec+19fz41Lxen1zfioi42NPz+at7+mXdHi7Cz6252eS9uOvX2tvpdZ3XTEZZ6DkjImIc+sw1TvX6HhExKU3cb1mteq0rY9Ncz3N54e/Qs0yP76XOI9UPJuwMLsvY17JbMvbEvL4njIjomjPvwqJut1q34u64ac7DbthUfHgqp+bAYTYsSeY3JKU5zCVjcwhwsYhIZs1839RrTNnwYyopTD3kZh9U9WGvoRsnMd8oIiKStpkjmvqZ6g2/b6tPdNzdnbQrzix5qSda17tHhf/Ok5u+1DH3Wt3mSZu3Xju8bFnmsdvftmUj+C+/AQAAAAAAAAAAAAD/HODjNwAAAAAAAAAAAADg2OPjNwAAAAAAAAAAAADg2OPjNwAAAAAAAAAAAADg2OPjNwAAAAAAAAAAAADg2OPjNwAAAAAAAAAAAADg2KvdbYJOlkcnyw/8e3/qv6svNSYytjzTl7HfvHLa5v3stYPP8rYrxbqM/ZEVn/enz27J2CjPZOzOsGXz3t6ZkbHxRDfP5uW2zfutzVkZu7JfythCM7F596b6mfr7XVv21rBu8urfvdCZ2rynWqYvzfdkbNrz7zr9/Csytv2i7t+//MoDNm870/X/kVNr+nlyP6Z2t3RfWpzVY+oPP3LV5n3z1pKMbY0b+jfreixGRDy1qPvDNf248V/ceNPm/UT7QRn7D5/ckLHLV/V7RkTcHDRl7L7OQMby0rfbN26dkLFOVsjYanto845Mfyl0F4yIiJmaHnO7+3pO2+vpOoqI2OzreWvb9KXWIWvMO83W9RxwdWNexk6YtSYiYt704ST0vH+p7+tB1f8g93PSu+3DS73oHtLWN/p6/YiI2E6P9pwV3S5y838YmC6wOfZjbKKHUUxK/S43B/49d8ZVb6T4vJ2ajnfNrm1v4p9na6Qrojf1Y2xa6rLj0GV3J3psvkWvA5fNXuXVPT92L6UXK373cO1s0cb3prdkbGP4moxtp5dt3k5drwOtdE7GHsr9uuXmTrcOTCr2G/sjPcdlZsBlie+jpQmPCz3nVq1po0KPqe3J0efdTk3X/9mOWwf8A39kaV/GXD1ERHxzqyNjGyNdzs2/b8V1PU1MA5QV71pLdF631GQVzebi5lUiMetFhG65o64GR7U7qcW0OLggVO0j1se6/7y+q1/+jb7ukxERbyYvytj26JKM5YXplBHRzPR+ZKHQ8/VyW68tEREPz+h3nW3qZ9oZ+v3d2kjPnXfSmzI2nu7ZvEWh9+WTXJ91IyJeiS/J2GCs70aGY/28b8VvyNh/sPt1GZvtPGzznm9+RMZe3ft1XW72kzbvj3ef1s9kukt/6kf3yGyfpmZunKn7uTxL9Ll+09zHTMyeLCLi1lD3795EV8SkYu1ZbOi5p262FG2z542I6Gb6XTOzSMw1/D5m0dx5LdT1/FBLfX/IzX5jau4MI3wdu/uEaeHfdcfcKb7Z0+fv72z4PfzV5GXzTPpu5IGZH7R5Fwu9Jz6T6T3xidOXbN76R84d/u99vw7dC9lcFlnrkPau2NB+6ff0nfWdoW7LnbF/nuc29BrzN6/o2CNtPU9V+YWtn5ex0pw7IyJGk00ZazdWZazbPGnzpofsq962mN4nY83S3827o38efpzNJPp3O4Wu/27in6nT0P3l69nnZGw43bF5k0TPR/VUn1Hmk1M277ip9zr9xO9RHXvPaOZ785r3VOkObH09VotpxQGnp/th0tBzZNLz82fSM3fWs7qPJm2/346aWU+rLgacurlsa/qzRdIx+5VZ3TZNd9EZEUWu26Y0h1oXi/Dfl1wVLjX8XuakOYPdNseddurv4erp4f2lKKexa0u+hf/yGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7NXuNsEji9sxW28c+PeXNxZtuTvDg2XeNrqzLGMv7fjv9b87/XUZW997TsY+s/CXbd7TS7sylmaljC3udGzem/tdGXvuxpyMVdXDlf2pjL1/WTf7v/6x123e1y+tyNgX1+Zt2VqiY++ZHcnYxx67ZvOu35mRsf6gKWP1vcLn/YYu+6UbqzL2rU3fNk8v6v6yN9S/Oc4zm3dlpidjAzPeds1vRkS0armMLcRExk7P7dm8H8x0/X/luq7fF7dP27ymm8XuZlvGitKVjJgUul2XW0MZa5j6i4jYm+i5cqk5lrGTs/s2775p1/VBy5ed6jliZ2tBxro1Pe9ERKSJ7vvXzFjdGPsxVei08fCM7qMzDR2LiJir6/hCoy5jz2/7vnS7f3ifmBR+Tnq3XVjZOnT9nlyZPXLOca4bY2vkx0Juxlgt1XVar/gzvq1U/x96pstuj3x7jHIdH91FWy409Pgrzd8sblU8785E9+dO5reDSaLjk1y3a7/Uc1hERD7Wz3xjrJ/35fKrNu9gtClj3bpeX+bSUzbvbqmfNy/0PmY03bF5O/UTMrZSnpWx9yz6fUE91ePRDKlKA7NG5MXRE7se3De/WfUurh788/gxNcz12eAf9j4nYxd7n7B5/6Nn9LhZXfJ7q9f3z8vYdsVa6hSlrsMydMytzxFhN23ZEWNVcbNMRccdViKiIaqwYvp91w3zJJJDKq+f+zbe0NNU3BrofjcIUzAiWok+s7brSzKWl34ftlp7QscSvVf5qbN+P/rDj1+VscSc6+Omfs+IiHNtvR5+pPGojA1CzyUREe3QvzuOgS2bmH1DUep6Goxu2rwRbk9nzrp9f9fwgo3rvG9u/6rNu1N7SsYaqV5Ld8w+JcLve5uZrvtu3c81i0295s2M9f3StYHvD0Mz5namfRm7uef3G6s1fad1omX2DBVrRLum67BlJvr5hq/fWX2Ms3uGvYkpGBHJvm4bdw6ukpi+Pyn9vL820vW/Zbbp/cLPo3uTGzK22HhAxp6pP2Lznp/Rfa1rjiv9HX3fFRHReeX2of+eD/1Z5V7YfD6LSf3ge37tir/n+q55xzNtPVd9Ydffp745/pKM9cdrMvblHb92Jal+3rLQ9V6G73vOYHx4O0dEjCvOYwudB2XsY229hs+pzeHvc7NRf+rnBTMFVu6Fj2p39wdk7IXsd2zZaaHXILfnKxJ/T9TM9J6vF1sy9pJv8nhq3pxvpmb/VLE3SMwBKL2bM4Mp685jSdVBxR2mTR9M+xX3v2PTrlMdS8YVc0DHfMO4m0uOml5/EnNHFxERbb0/SOf1u9bHfg0qzVrsvmGYo3tERAzN3crE3BnsTPx+0O3NFlP9PWY99HdgJ49x3Po+/n/8l98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOvdrcJLm3PRbfW/Kcu9+jcnozNt0cyNlvv2rwn239Yxv7m7Ydl7Fovt3m/ce2UjN3X7ctYPfV596a6CS719N8mTEqbNt6/rPP+G594Xcbmfkq/Z0TEE5+7oZ/pe/5vKU7N7ctYqzmRse++4Z/p12/NyNhCQ5f76fvu2Lx5od9noT6VsWeW/LB6akHXQ1EmMrY3qdu8j57U/fDGtXkZe3ZTxyIiZmu6D7t6KEz9RUQUie7EP/nMJRn7+Nm2zfuFq6dl7MvXV2XsZGts89bTQsZ6pm1WFno27489eknGUtPkoy1fv3OToYytTvT8GxGxud2Rsf2RHlQrs7oPRkQ0Gqa/3NR9//rAz/vPbej5o5Hq8djN9NwREXGxr9e23Yl+3ms935dK0fUnpe5j98Irt1cOXb/HuV9gxrl+zp1cr9+TqV8PQ3fZqJm/1atHZtO2M90H6onO2675MZYlug+MC1NHpR8nl4Y6Xhvqdy3Ct9v96QkZ+9AJv269vK3fZ3MwkLH5tGXzztbc77rx96TN22tu698sl2Ts0vSbNu9gvC5jRannt6gY22XosfFUS69b3Zpv8/WRXkTamXne0H07ImJnrPPuTHSbTs0e5624jo0LXbaT+XqYqen6v89sKR5prNi8vekTMnZj8ryM7WZ+Dri2Pytjbi8SEZGZKm6ZqbI/9W1TqIWrQlWxqfk/uDb3O8GI1LyOi7n6i4joiO5dr1je3m2DIok4ZP3aMXuTCH/e3Sn1IpxW/L38TLkgYycSfY77mTN6Po6IeHRG76cemNuVsYce3bB5a7O6nvKe7pPdirPC2bauwx84qXttff1DNq/blvUmfk54Lb8lY5eHvytjjfqyzZsmeq6f5Pqsm+f+DBJmL5OYq6vEPE9ExK/0/56MPT7+jIydTOds3q7dxxydm69bbT0erwz8pLuR6LGxm6zJWD/3Y2q9eEDGTu2f0bGGP+N1a3qsdus65uovIiIz9xBu3do0+58Iv++aN/cmERHLTX2Gqmd6nA+Hfn6+2tfxy3t6Tbia6Hu/iIiFxgUZO1foe9fZun/eRXN/V09143zzqr8zPLt5+N5rf6rr/V5536//XiSHrOF54Z9lNNHzuZsfy4ozYphzyN0oC9/n78lvmr3M1NxTRETk5iy3NdKx1bbptBHRNPPRQsPv2xpmuLi9wX5F1e+OdeGm6Uv11O/Ax1O9xg+meh0pMn2fFxGRJnpuzUtd9mv7esxERHysf1LGHtjTdxEjcycTEdHq6Aaoz+jxllXcw7nrhsIMY3Nt9Vbc3CmY67IoTT+KCHvoSt1dmzusVWmZdbpWsTlomD3d1K//YeaBdGr26oWvw0bo/p1PdIeYjv27un3Qmrnzf2Pf5+2ZC52aaddO7u/mB8nha3jyff433fyX3wAAAAAAAAAAAACAY4+P3wAAAAAAAAAAAACAY4+P3wAAAAAAAAAAAACAY4+P3wAAAAAAAAAAAACAY4+P3wAAAAAAAAAAAACAY4+P3wAAAAAAAAAAAACAY692rxKf7fZt/KFH12UszXS5C/ePbN6P9u/I2PWff0TGepPC5t0c66qqJ20ZW2iMbV6na1pnru7LXuhMZGzzTkfG2s/dsnlrs4mMPX5hzZZNslLGdjZ0He5M/MuebOm8D3Z1/Z86vWvzlrl+18FEN87meNbmbdamMtbIchl7bXfG5r18ZVHGru13ZeyFHf83MIsNHX+gq2O7a8s27/5Ul/3Tj78pY+f+sH7PiIgL/9FAxr64rutwYNo7IqKf6+d9cmlbxk58wue9/XstGfuVN87J2GzNz1nvX9mUsQc/tGPLzhZ6bOxd1H0/SfVYjIhodHX/frzUa8LXNnX/rbLS0PV0/9yeLXux35Sxb6zpueVGsWXzfmT25KH/Pi7yiG1b9F11Z9SIzrRx4N8L34yxnQ91LNF1modelyIiJomu017oOp2Wfl+wWjwkY6djScZW2rr9IyKWm3pO6Nb0RubLd/yc8MLkd2QsMX+zWE/1OhoRMVN+TMZG+bwtuzPWY7ce+l07mdnQRUS3rt/H1dLHGmdt3lqq47np3zu9CzZvXui+1h/pPVAZfr7e6L0iY99NnpSx5d4Zm/fWQO+filLXcKem2zsi4obJuzHWbTr21RDTiriy3PST1hmzT2ybvelK2x+TGrt6zLWyBRn7wMyKzfv4st6LD8Z+T7xQ13vMzfHB+f5tqZ+WfLxizXBy0+ZDM24aZg8ZEZEl+oHNtBNmy/v78cNftijvohKO4Gt3yqinB+tne+LX2WGp4zWzvnRD952IiCj1WPiJszr2w6c2bNpuQz/v8sl9GavN+w6d1HQ8mei2bDT1+IqIaGa6zz4x15OxP/6kP0Pv7uqzwl959pQtOy70uShN9Bw30/Lry3LtQRmbhN4nXtv9ss07zbdlrAxd/2Xh22an97KMfS107KPzf8nmfTTV+0hn7DYjEbFl5sb1oX7XL/T+G5vX7SPdXqWe6fujiIh2W5/Pe6Fjg6nu2xERc3W95rm5vGpNc3ugwuxAp4VPvGfWpqG5S4iIONHS4yZJdH/51pavw89u3JCxjeSajDXD3z09WT4tY6c7es14wh85Yq6u96BDc1+zM/Fnjqx/+Frk7njuleFkPZJD9imFma+ruPmx2j3a5P0zp2Le3X9Bxr4yp/cytd0ftnnPdvU8dtIP32iac8rEzEcVU2CYbXLkZi0ozD6yKj6e6tjU3C9FRCSJHqetmp5U9mv+3vNvXNTz3J2R3gedafmz8qPmnvHMsr5rbbb9OB6P9Dw3Huk9XdX+tWbullPTBxuzvh6Shv7dxH0rq/l5OUmPuAFw5arKVkhM2dKsiWnV5etUx+t75lzX921TH+r46/t6zrq87/Nuj3WbXy31eedGoeffiIi90fVD/70sv78LJP7LbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAsVe72wRZUkaWlAf+vTep23JvvLoiY3mRyNiT3XX/PCcaMvYXHtiSsaLUvxkR0ajlMnZyYV/GZpbHNu/zL63K2DBv2rLO9iSTsZfWl2Rs9FXfJea6Qxnb7bVs2cu7szK2PtL9ZVj4v9F4sKvr+NGFHRnL6gf77TtNc90nhrmu36HpvxERr+7MyVgrLWTsRNP3pdL04WsDPS6Gua+HM20d/8hJPR7f2J63eb+2odv82a+dkrH3bt+weUfFWRlbbOh3eW1ft2lExMZQl/2XPrWtC/6pn7R5V3Z+TcYmr+s23Zv6cbE10OMxH2zbsoUe5vHqDT13V3nPg7dlrDM/kbHMD6nIkqPV0/1P6TUhIuLhvRkZ+2Km++9TzRM27x85Mzr03/v5OP4r373fVd/ZyqKZHpzzX+7peTMiYivZlLF6HH3dmobuA8NCP9OkGNi87VSPhYWmbsdG6jveqZaeEx7sHt7GERHX+76OvrWn1+hT8aiMtUu/Bs8k+ndf2JraspNSr00LNZ23VlGHbmyfbOvg47MVz2vWYbdGv7L3oM9b131tf3hdxvK8Z/NG6Pp9dvu/lrEb5Sdt1k9kn5Kx/Yne7620/F6wZ6p/MNXjomK7EYWJT0zwRt/nvdHU7/PgrM5btfZcmn5dxuppW8Z+8KQ+U0RELCzoflbb030lIuLkQO8Vrw/c2cy/bN2MZddukfpGz83ruLxVfcmFXbvWKv4sXJWtmOredd/NL0ZWHNzbd0LvWyIi5kz8VKMrY2c7fo9stmFxrq3X9uUZP3jbXV22Mac7T9LwDZmYBkvrOtZo+7XnsXNrMrb0L98vY8UHPmbzLrT1fPJf375ly/7YM3r9ebXU77NQu8/m/fMrT8nYvqmm/2jnizavn4sqBr6ly6apHhcLocdFRETNdX6j6vy9Mdb7yG/mvyVjee7HVJLo9TA1seH4js2re35Eq6PvPpZLHYuIKEOvW279GPpl1upNdZvmpZ9bbg91fOyX7zjX0fvpb2/rOeDn179p826O35CxRqb790Km7ykjIs539fN+ZFm/7FMLezbvxNz97Zm9qysXEYfeWUdEpHc1rxxNktQiOeLcccRf/AP8reNM99tWqu82h7mfcAZT3W/ziu8QLu72yVX7UjdaCjMmksTvB7NUzwtFoTcHpblriIiYmLP0eKrnlKLl8w5r+lvOb93U+5wLM/4+51J/Ucbe0+/I2Hxd73sjIkbmO8SsKbs66+8imnW/v1XyiS+XpPqZXKzyv9I1nT8pTJtXPK81PnrZpK7brez4b6fJQP9u2tB1WK/7vl/LdNzd9Uwq9jK3im0Zu1G+IGObvVds3mmuxvn3t4bzX34DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI692t0muD5oRTtrHvj3vPTlpmUiY0uNqYwtvjCweV9eX5Kx311vydinT/i8MdKh+fZQxprDiU27O6nLWKarKK72fAVf2dexB2Z1PWyNfZdY2dXvU0/9M+1PMxnr5frvMDbH/m80Thzsfv/YbFs3XNb2z5s1cxl7eHVTl0t83tz0/XpayNiJmb7PW+i8ExN7YMZ0tIi4z/Tv5aWejC3O++e9MbwgY790dVaXG+j+GxFxoat/9wdO6nF+cVf/ZkTEC7sNGdu41pWxc5u6r0REpG09LlbMXFiYfhQRUTPj8darM7bsaxuLMvbVzbaMfWzJz6NzPzQvY8mKjj3wvJ9Hn9vUc8SVvq6n3g09/0b48fjYgp4rH+rquSMi4uzM4eNmf2oWmnvguzv7UUsO1u3N9Kott1qck7H5RI/Peurn8t1cv/+pOCtjs4fsQd7pmRX9TK/v6LZ6ecfPYVf3df+5aNbZ9aHvH6fiURl7unVKxro1Pye8vqfH595UzzUREXN1/a7nunoOW9DT5u/n1fPUufZYxppmbEb4PWbf7EV+4rRfB/7OrfMydq38sinp29xJUz1fL6RnbNkidP3uTlwd+rHqSk5NcFr4/VFquvC01GXHFYeONRMemf2RGzMREXmh56wLtWdk7AfO3bJ5s6apxD1bNGpmbDTMvqBq/khDxxNTdOCnlshNH3UqupJ52oiG6d6ujiIiZrLD6zc74nsc1Z3pq5EkB+ey89kHbbl2oufyj5/QFfPhpV2bd7ah5+sHHtX74Np8Rb9r6WdK5/U6m8z6fUE5cPtKPa5by34ub/3xJ2SseN979fO0OzZvmP1Tef+Dtuhn/9LnZaz1H2zJ2K3+d23e377zkIx9a/IrMlYUFXcu92gsnZr/AfOLul0/terb5qk53fcv9vV4+4ZbmCJiv9T9MDXjuEqa6o1ZUeh3idLvuyZTffl0Z/KyjHVqczZv2dN3eydbepy3M7+PqZvwxkjPS+OK7dzf3/9NGbsvecqWbaSnZezLa3rc9Io1mzdLdT11aydl7IPN+2ze/+179O+6e6CdXX2XEBGxP9J9tJXpTUVeVuxdxZCrpabf3yNz7fOHruH90R1bzrXl1MytZcX4daa5Httlqe8Jj6NT85+UsdOlXvMqruVimOv6d+fSKu57QRV3dKqZc2A71feEERFhlqeJ6aNF4e/7kkQ/0yTXd9JVYyo173o1W5ax0d4Jm3dzqPeo22M9jlsV91rurHxf28ydNb94zYcey6Xp4FPzHeetsjrWnuj5vD7096LZWI+pxOzxk4q9QWnGalL3YzWZN2tbTZetGsZlzbSNOWfnU5/51p6+Y3L9bMWczSIivjXVe4PNvddkbJrv2Lx3+99u819+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOvdrdJphvTKOTZQf+vTc9+G/vlCWFjM3WchnbGzZt3m9stWQsMeU2x3Wb95U9XVWv75+RsXO3JzbvlYH+3fl6KWM3K/5soTfRZXUk4lLfd4ntiW7XUy3/rvVU//JsTfeHyz3/st/Z1n1itTUnY43m1OZtzen4zPJYxu4vt2zejZ2ujN0ZdGRsb2ve5m2mug4fnhnKWMOUi4gYF7r+X7p6QsZ606q+pEdkbjrpnZHPe0FXb5yY35exbsP33yxZlLHfuXpKxt7/b71m817cPStjv3RZ11FhR3LEY/O6v3x8Wc+TERH7Zv4e6um5UnJuRQcPWUfe9ukH37B57+/qtnH98MrtBZv38VPrMrYxbsjY7aHvo19bO/x5B/nIlnu3tZJ61JODa9CDxYO23IVuW8bOz+g+W9V3fm1jQ8bmy1kZq6d+jXh1R//w58e/LWO98R2bdzLtydj89IKMXUjeb/OeTZdl7JWBXl8uNBZs3tWWHvep2yBFxHJT1/Gjs3oNOVmxzjpuZSpK/8AzZh/56MKOjJ3t6TU4IuIf3nRzp3ti/7xJ6PkvTfVcs5FftHmvm3XrbOhYLfHP263ruGuapKKj1c1QdvuCSeH3MdNS94crw4GMfSf/nM2bmL8h/kjnvIyNJ7dt3u01Pcfe2ZuxZW8MdB/NTePM+WNQNEzbTEc6725F2/Rz3TaZ6Yf1ir7k3rVm3qWT+b3V2fbh+//eVJ8L7oWn0x+MWnLw/FM3c0lExFOLun/8xDndL0+e2rN5mwu6nbN5XeGJG/QRkXb0fipZ1hv+5KzZb0ZEYvYx6a4+K2S3/BmvePRhGSvNGhwV+5gw4yi5fcsW/Xd/4REZq9f0fmM09e/6YvkVGXP7o+SQfec7laWbM/T4nGk/ZPN+qvaDMrbQ1OPmLz59yeat1/Xz3ndDr7NXejoWEbE31X20zO0OyeadmnZ1e5FIfB8tze8ORvo8dSN9wea9aX530tfr9/nsgzbv2dBzRG762e8Of8nm7Q+vytjt+Kot+3xvVcbSVM+FfsxEPNT9IRn7kVk9bv7vP+bvMNoP6Wearul7lfyi70tVe3ylrCiXF4fHy+ToZ5WjOlN7KrLk4P5+Uvd3AfOFnrNvp5dlbHtyxeZdqj8gY1sTk3f/RZvXzRtl6e7e/F7sXtkZXpKxvc59MpaXFX1opOf7Vlb13yPqfm22SBUnz4jCVHEj0YkX47TN28z0OSXLdN5mqde8iIidZE3GNkf6rrCW+bydTK8FG6H7/m6qnyciYnei74Jub+pnGoSfA7bM754q9L3yHxr6PcePndL3IzMNfcZR8+o/1tchN9d3Cn833zDxdGz2zC1/Tkpq7o6j4j6nZfa35twR04pL0lu7MrR3R98TXbrt2/yLa/p+9XpP1+HuxD/vzeFzMpbn+oyVpn6sLnUfP/TfizKPzf1nbdkI/stvAAAAAAAAAAAAAMA/B/j4DQAAAAAAAAAAAAA49vj4DQAAAAAAAAAAAAA49vj4DQAAAAAAAAAAAAA49vj4DQAAAAAAAAAAAAA49vj4DQAAAAAAAAAAAAA49mp3myAvk8jL5MC/D/OD//ZOZ9oTGaunhYztjho276dP7MvYM0/elLG0Xtq8L79wQsZOLe7J2JtrizbvS3v6fe5rT2XsMyf989ZTHT/R7MtYeUhbvpNumeq/pGjX9PucWdqVsaf3Ojbv79xalrHLPV12+4rvS3N13UdPzel+trCs6zciItGvGneG+plqpk0jIp5Y2JGxj3xwS8Z2L/lp4CuXzsjYzX1dv9cHmc3repqLrY98H51vDWVs8f6RjHW2dHtHRHx0diBjWzu6HrYGLZv3Q2du67ITXfff3vLtNm+692pb11FExBMd/a7DQs+Fz+/6d33vf35FxlodPT+0F9zME/HBz+gxt/s1HfviS/fZvNvjpow1zDr1QFf3s4iIp05uHPrve5NxxIu26Luqk9ainh7sR4/M+771yo4eK3eGep56o7hu827FDRlbS+sy9un6h2xeZz49q39z9LwtW5ZjGdvs69j8rP7NiIi1uCpj+8UtGSvGH7V5n+6uyNhS08+rp9q6Xc+19bu2stzmHeR6ndid6H7oZ7CIh816eOacjp0c6rU9IuLpKw/I2OvxPhm7s/MNmzcSvYMqCl2/zXTOph2Gnv96+YyMnW/4/dGiCff0VB7D3O9jXLhwsfB5J7mer2+k12Ss19PjLSKinnVl7LWePht85ZZeRyMiEvM+G2O/t9qf6rHsasnPAL7syDTc9tjvrfZKsy9LdEdrZf7UMTbbhqmJzdb8fuOE2D+1p37df7f97LlOtLODe5S5iuf/zAOXZWz2pH6H1E8JkbZ1D0pSE6tV9Lym7u9J2zxUt23TlvOzOrisz+7JrD+TJhd1/RY1s7dq++eNHb1uTf7jz9qi39w6JWP/2RN/ScZ+6mG9F6mytqP3ZT/97Tds2as7vydjRdGTseXWIzbvybbuSydN/3VnvIiITlPPcZk5uz8+58fqm7vmmfq6DsvSz7nuxibL9L5geeYJm3U43ZaxvYEeF5u9V2ze0tw+JeZdXq3pu4+IiGsNfX/UMPUwmuqxGBFRhtv3+r3KeLKug2afWHULt1zo/f+Hl/Tzth/w58Gk4+Lmrrfuzwbthi6bF/pd88KvJ4mow1rpx+K9sFIuRy0OruHt0OfdiAh3VVsvHpax+ZrfdxamDhZqqzJ2Z8HnXe+/JGPDsb6bv7td6dENRvqZLsbvyli3cdLm7dcek7G85+8FilLfr6209HgwW6+IiHDb6Pma7ofpVPeHiIjc3BW2Drl3etvJju/7H185J2NXB3rPcWXfj++JCX+2r/dXawN/aXe10HuZVl2vP/Wa33NMc30L0m/pde/F7Y/ZvE/P637m7teTxI/Fqbnryad+LbgXqs4dSdv0w5pfa8sHdB+NrmnXgb57j4gon9d3qC9e1+PtuYr968U93XaXB3q//Xrygs07GK/poFtvK+YstTcrSnP59A78l98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOPj98AAAAAAAAAAAAAgGOvdrcJ0jj8C3oRiS13sj2UsVZtKmMri/s27+x5XXbvin7d6dT/HcDqvP7duVX9Lg8lmzbvxqgpY7N1/S6LzZHNO2Pie0P9m71J3ea91m/ZuPPAzEDGFs7pOlyq61hExPX9roy92dPvem3gu/9SoyFjHdM2/Ru6XETEqztzMrYxzszz5Dbv0lxPxrJ5/a6Tif7NiIhrA/0+6yM9zl/Z9s+7N9V1uNDQz/vQrB+rWVrK2JUX5mVstuv72YmP69jKE4smuGDzRk/H/8xvvipjT37lpE2bJYWMnVrcs2Xb3YmMPbQ7I2MXezoWEfGLr5yXsQ+auf0959ds3taWnu+G+3pO2x77OeBbW3r+6JqiP7q6ZfMunzt8rNbHut7vhS/lX4y0OPgiJ8c/asvdnuq5pgzd707Eis27kVyWsafKD8rYn3/Aj93Nse4Db7xxSsZuNFdt3uF4Q8bSRHeQN3Z+zeYtS12H3dZZ/TzNvs2bmW3ZyZaeNyMiFur6mZxJ4edrF08T/UxNM89HRNzudWRs/w29pjVqft36y++/IWNPX/oRGftHyads3u/Gt2Ts2vbvyNh6/yWbd7FzRsa6mR4XMxWng4WGrv8s0R1tUvizwTjXecvwbe70yrHOa9bKWub3vFmm+9J2sitj3zP7wIiIObMVH1cMxaHpwqmp/kbFn0O73901wUHp17XUnBfriX6ohnuZ8O8zU9N96VTLn6/UvOTmq3vhX/jAmzF3yDklrRi7aVM/p1m2KpV6Sx9lYX6zoh2ThjmjtPUerWz482zUjviy5l0iIv4//5reH/3rP/P3ZKz+mYds3sE/fF3G/tVf9GX/wv0m9u+Y/dxHf8jmTb73ioyt3tL74L89ftzm/cGvfl3GikKfFe70v2fzPlvoenomWZKx76zrWETEha7ee9XMXuXhGb93/ZEzbRl77sbHZGxncs3mraV63JxN3ytjf/603n9GRLy8o2N/c/zXZcztlyMiZpp6nz6cmh+tkJtJazDd1uWmem1/y9HXArfPScx/s9SoLdi8t9LrMvb0kjnrVGwMJld1Hx5u6LJF6ef9Wqb3FGaLGdX/XdfhebP0aGecu/HYTDca6cE9Zn/q+8/YrEELpV73ipi1eYe53jxOCl0/i6Xfzza6+jx2M/m2/s3cn2ndOCzDn+WcxOxJh+N1GZvmfj4fNfTd207jli27MXhYxh7L9X3gcsvf8dbN/muxae6k7yKvK/r4rG+3j5zQ+4pPZrrstT3f97+zrdfar4zvl7HNQt/TRkQUhd5fDcb6XDrO/X2qszvW6//QzKsRERMzL7caer1smFhERGmmtFrNzPXmrPb7/w8dMvcJ5qryLe5c0qw4WxxV3eed3tb95ar5PrdhvtVE+LPrQ13dDy8UH7F5v5DofebFrV+VsbLQ7xkRsRwXDv33PMbhZ9G38F9+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOPT5+AwAAAAAAAAAAAACOvdrdJqinRdTT4sC/PzrTt+UeeWRdxibDRP9eq7R5Gx9YkbHarU0Z++KbZ23eW8O6jF24OZax87P7Nu/TJ3U9LK7oOszH/u8W7qzPytjrezMytjbyXWJvqtumkfq26eVdGdv++nkZa2UH+9c7jQtdF6utqYy9tNuweeuJfp/z53RfWr+j6zciYnucydjQvOqmKRcR8dKtEzKWPLsmY72Br4fLPd3m39rU/ftWetvmHcSujH0ynpaxxbrvDzuDpoztTfQ4rlX0s+nNPRO8LkPZg0Obt+zpeP+a7tvLXT/HlqVut7LQsYiIWkvXxTMfvCFjD15p27y3d/TYmGnqefTG7Tmbd293JGMnH+rJ2Md7elxERFx+85SMbeiftHNsRMTat1uH/ntvapLeA7uDq5EkB/vY3y7+kS3XynR77I1vytifW/rTNu8fnfu0jL2qp4v48obvz3sTHVvN9FrZqs3bvKPJjozVUj0Wprkfu1l2eP+IiJhr6r1Kq+zYvD+0qtfDmVpuy07MOuvWYD+rRhRm21A3e4rGIfvO75d7l1boOoqIyMzvvm9Br4e/fM2vszPJso0raaLXtIiIxXJJxhYaer+X++1cTCrWEKXptzFRS8weM9PtNqnoDs1cv2tmjkKtuq6/iIimmQtnSr8OODWzxZ9WtI1ru6mpp27FibBunqk31fNHPXyjn2zpPdtKS5d1zxPh32fO7CM7NT8HJOJsoP79XqnPRNSbh/zm3fxZu+kfZcUYK03HPGSb8T/RR8O3NEz/aeu+E3U/N1pT3QeKb79pi/4/rn5bxv7dv7olY/X/9Hmbt272FPcnfq/y1z+iN1Dlh39MxyrqMGnqdS3p6n3Mh39a10NExM++9Jdk7Bc3/l8yNhzfsXm/Xf59GdtKf0DG8vIxm/fnWnqyOdPW+4JmxVzzqFln/937PihjKw19ho6IeGlPt9sde2T1c9zEbOjaDb3HWW08afP+cOcJGdszi/8Xxl+1eSel3ouPc312LMPvl53M7BkiInLzu2mq2222dcbmPVXos8N9Z/VZeHrbt/lwTffR6bBiw2ekFXcySlm5DB++GKV/wOt3RMSJVhKt7GD9jSv214cU+cfMlinGFVV6Z3C0s9xw6s83/YG+4807+oDeCH+mHZV6bt2ZXJWx8dTc50XEZKrz1jL9TIfdp7zTNB/I2O74mi9b1xNzfaTXgm7Nn2HOdXVneqCrW/3+ijvI3NxBDnPdSZeb/h5srqPrITNzxoWKbxRTM+Y+vK7Xnzvtl2zevcFlhnAA2gAALRtJREFUGz8qt57ONFZlrFvzc/Iw13W43dd7uvbEXLRFxMnTeky1Tui2MUMmIiIm2ya4a86lfT8Z1hp6LKcn9L1hRET09Ngov/qijBU7vu8P1vUzPbul2/VW3+8zG2ZBee+izvvojG/zJ/Y/IGOfLR6SsS/s/DWb943BFw/997LqkPr7+C+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHHh+/AQAAAAAAAAAAAADHXu1uE8zWJtGtHfyGXk8LW264o396MKgf+XkaL23IWK1VytgPPXrN5h309DNd3lzQ5Sa+imdbIxkr9eNGWSQ2b1HqeG5ivtUiWpl+qEbFn1IsN6YyNlvTsXlTR1XG00zGClO/EREPz+3L2NyHWzJWf37P5n1wb0bGWgOdd22k3yUi4tvbbRl7ZEWXve89uzbvp7cWZOylbT0uThWrNu9S7YKMZYnuo6/v+462UO/I2InWUP9mxZx19cU5Gbtl2vSRU3pOiojIMv27z187LWPrIz9PrjQnMvbec7f9M7X14Bht6b7UaOpxHBFx38ltGbt6Z0HGvret6z4iolvLZexnf64hYw+c69u8H9/R8RuDpoydaI5t3iUxp+1Pjz7XHUUta0WSHGzPH2n8pC331JJe135+/esy9mOndJ+MiLh/pidjC3XdB7654eeE7bEeY5NSxxqZHtcREWmi62E83ZGxc3OfsHn/y0ffL2NNM19Umavr+nX7goiI/lS/a8/EphV7FSdL9DzkYhH+LzvTirKO21NMC/2r3yq/bPOu778oY4eN0bfNts7YvPOp3lM0Ut02+5OK+jVrtGvxqn3irJ5Wo2YS11O/P8oLvQ6cmZ6Vsfls2eadC73fWKjpl6nqga4OR3q5i4iIYe7Gjdn/VzzUvlneNwq/ljonW7oOH5jRD7U39XOL6d62L41z35dU3tG0omH+WWGWkNK0cTE5+lzuOlfaqai3ujlHd9yE4dsxCl0RybZevz/7367YtCu1h2Xs2vRbMjYYrdu8AxOb63zKlu18RMfK+XnzoxXjumHa5oyeO9P3PGjT/sJHtmXshZ/90zL20tYv2rzjqc57ua/X6N+quB35kbFu8wfqelDlZs9QZcncqXTNnUpExGOzOrba1OPmdsU9xHXTX36g/kdl7OFZvU+JiDhpwqNCP9Nwy3T8iLhm+sM3B/+DKXn0PWRR6HuIiIjZjh4bp5rvlbGPNZ6weT+6ovtamq3J2OBOxX3j5Gh9uGofXpq9SmrOQVUX2yptzawH90ore+t//6TZuq+bhbp+1sW6Xk+rzk2bHV1762Pdzhsj3we69SUZO7mvJ6Otwq16EXnod12pn5exes3fnw0TPY9NEz239mLL5t2Z6G8NeXH0+58s9Bz49KIv++lVve84e3ZbxlqLfryYqxW7BzXXKpV584GeMxp7fp95v7mr+LMP6D3SfWt/wua90de/+8Wx3g9OSr/3Wg59h/5Iek7Gnln28/nE1MNnr+s93bpf1uJHtvT/4f1n9Z10Z97fGxamWUtzXzPZ93NhbVPPPZf/gd+vtBuXZezitu5Ln/yI/xbZMtcRf2fnN2VslPvvUkWh6/il0Q/K2E+f0N8oIiJ+4rQ+Rz08o79ZfevFB2ze4fjweba0k87/hP/yGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7PHxGwAAAAAAAAAAAABw7NXuNsHJmX7M1KYH/v1Xrq7acr91e17GHp6ZyNiTizs27/JOX8bqC4mMdd7XsHnnx4WMrf+Kft7NYdPm3eq1ZWzPlK2n+nkiInZH+n2Gua6HgYlFRGyMdKzmi8b9Hf3Mi62hjJ1Z3bV507rOe+XaoozN1w/223eqmTq+8/lcxqZT3aYREY+fWZexla0ZGfvq2pLN+9qe/luWa1tzMnb20czm/YkP6DGV/Wf6XS/2Ojbv+xb2Zez6QOedFr7vz9b1eGybNq/XdZtGRGzs6/e5aMbx9Ytnbd7Tbd337wz1OL4y8NN3XuoBuXBnwZYd3dR94mpfv+tqy0wQEbHa1X3ptmnzawPfR6eljp/5r/U8ev8J/TwRERfm9dzzwIIu16iaW2qH97X2ZGzLvduatflIk4N195ce9c/xAz98Scb+9DcuyNjr237svrar57+1kesDpc07LXS8KHVsMbnP523r/l6Gftc/Nvcxm/fszIaMdRt6fuuN6zZvXpi/d/RNE81M/x/GZk7OzdiMiEgSXf81E0tNrCpvavYqRfiNzDTXdTgpdWx/fNPmzXO9Hq7Mvk/G/o2TP2bzmq1rXOu5NrVprW5d12HXd4dopL5dlXZF3m7d/a2vXnvO1vw+ppa4/bR+l4u7fo3YauoXGua+ccx0F7OmHu7orUhERGwO9e82Qj/vyYavw4+t6DntgtkzXDH7roiIzbHeI7k6umPOTxER9cnhhfsV56c/MBVjtzRdr5jodyh8l43S7DlL80xZ3z9wrWH2upmJDXyHTkx8+psvylindtrmvVCcl7Fbmc7bqul7kYiIH2r8hIz96Bn/3zKs/bo5d/Z+WcbS8/7cGW1zxzHb1bGJHvMREWH2FH9h9REZ+ysDv2cbjNdkbDTZlLGLe79j8/7v39BnhT+7pfd7j876c+eiOZe6M95m1V7QlG1lenI80/LP+xNn9FzfMXmLij2824+smLwRvh5au7p/P9vT64CvBa+W6fuYiIj/5JE/KWN/7H0XZWw6vGLz5oVu83yk5w9zRLorZusUERGZOXMUpv+mmW+dTMwtjaRigbsH2lkZ7UP6rxuDERErDf2sZ82eaa7ijmbf7H1umbufawN/171j9hVzdf2bl/b8xr6f67bOklkZa6Z+vRzmCzKWmwExLPze4HbtlIzdLF+yZWtJS8ae6Oi9w0eW/R36+QtbMtY6Z8ZZ1++Tk5qpY1f9rlyEXQyKfb2vqG37PUea9WSsZcbbQsPP59/d1vugB4YfkbHvbfrnPTej17ZV3VViruKu251jXjJ3eF8dv2zz/squbtd/Z6z3dD/64DWbt1Y72mXFuOIO/bWLem+wYu7tIyL+vWdPyNilkf6O+aWv/oLN69QyPQcUpb/T7bb0d4rXJr8nY1vjP2Hzrs7pe633ffKOjP3l3T9j8/7uncGh/z4tR/G5nb9qy0bwX34DAAAAAAAAAAAAAP45wMdvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxV7vbBPOzg5it5wf+/UTj4L+904tD/dP9XH+TH+eZzXvrjVkZ2+63ZGz55b7Nu9nTeX/z1qKMPdQd27ynZ3oyNjX1cKvXsXknhS57ojmVsVOtic27N9X1vz723emFXV3/L+01ZezTU5/34fvXZWy+PdTPszVv8353py1jJzd0m3/81JrNu/rUQMZ2vqXHzTBPbN6Fho7tTuoyNnplz+bNurqPPr6i6+gjj+r3jIiYfUz3pQee1f13MvFzQFnqesrSQj/P8sjmzWq67NpQ9+0bA9MwEXHNzEs3zDz5/nlfv5/54Wsytv6SHm8REX/9e+dlbKVZyth9Hf9Mrm06NT0vpb7rx56ZZr+yoeduNy4iIs6avn+j15WxN3u+fs+1D59n+7nvg++2//DBH41OdvBZz8xs2nJ5T4+FiVmjp6b9IyKuDXR/7+nuEd26z9vIdF63p5gZXrB5bxcnZGw+1eP6Myf9vmCxq8dRd0aXTXf0b0ZEbPf1fF1GxSAz6qmeE4pS95UqWaLzulhE9ZxxVFPXvwv9o+36ks3bH92WsSzR88m4onozUw/j3LSbTxvtmlln76Lu+1NdeGQeqqoeuuZ5W5lu00bFy/QmZl8w1uN4PdmweRs9PZZrFUe3frIvYzMjvR4uJP5c4XRTvc/58Ir/O+sPnrxzpN9cH/p1ds/MSztT/UzrY/+8qisN86PPdUdRTCLMlCOVfuq8JxJTpdl8xVXE4szRfnPsz7Mx0OfDoq/bcmTO5hERRehzXDPT4+8PtX7E5v2XHtTzyXzD7ym+deWUjNX+tu4Q98/v2rznn7wuY42HTbtVLNC9Z/Uc9vW1+2WsWffn+mmu63CS63edmlhExNXt35ax//fe12Xs33/0f2PznmvrM8HORI+bNPH1Wzdn4aaJnWj5M8rqnG63obkjurKrx0VExNW+nuvdEj1X95Odm7MbNf1Mn+z+OZv3fEv3/StDXUcRen2pMveIv3cd3jD7vYr7JceuJ2aBqvxNU7aWvftrbT3x9XcvtLKIVnawArsV77fU1PP98oy+z263/TqRmrGfm/ao6j3dTN+1uP13hL/v2zd30u6ZpoWfFzbMNDeY6n7SSv1e5kKclLF66e+jnmzp+4Y/c0G3+UNnK84a5miatk39tnzbRKb3SUnDlHWxiAjTdllb13/S8fvBzIyNxvrRx1Qr05dXtwb6TubTJ/wcMMrN9wLzDahq/7phzz+67jvlnM17Lf+OjH1z83EZW6jrvWtExLe39d7ghS1d93/8vJ8D3L3WzYG/a6ub/e3Xen/LlKw6nOm8eaHPM43ags36373nX5Ax923vT330NZu38wN6crn8C/pdfvGO/n4REfFgunrov0/K728N57/8BgAAAAAAAAAAAAAce3z8BgAAAAAAAAAAAAAce3z8BgAAAAAAAAAAAAAce3z8BgAAAAAAAAAAAAAce3z8BgAAAAAAAAAAAAAce3z8BgAAAAAAAAAAAAAce7W7TZDnaeTpwW/oz5zYtOVWmrMydm6mJ2ML3YHNe2VzXsa2xw0ZmxT+7wDGeSZjc7VCxhYbU5vXadZ12fONPVs2SUoZ67THMtZo5jZvb1/X4evri7bsZ292ZWxgqumDC3Wbd2+rJWN39mZk7Ldu+TZ/ub8lYz96YknGzu7ovh0RsXipL2P7I12/J5q+L51p6zZfauo2//Y3T9u8r+x2ZGzZPNMPLl+1eSfrEx2b6N8cjHx/eGFT98MbA1324zvbNu+F07o/FGUiY79zW8ciIh6Y1XPLQkO36f3zuzZv0tD9+8bmnC07Y1aGBzq6L9VTPRdG+Hm0nup3fbCr+0pExEJd5x0Wuv73pn4J3DNrxq2hjr206+eWjXHz0H8f5roO7oWf+z8OY65z8Denz/v15erX9RzXn+gxVjPrUkTEfF3Ha2YYTSuqLTVlW6bfpYlvx36u6+FMS8+NTy1v2Lytlu7vidlvNGp+/S5NPU3NOImIKEzZJHSwak5wXLtV5c0SHXex0szlERG5qafclP1E9iM27zfn9F6llej5+sUtPzfOmLnx8QUdG/iuFGZ5iY6ZVocVed1Ydr+Z+W1BNExncu86rpiTB+aB90OfV9bios07KXXZZurX7yJ0n9hO9d6qV56xeZvl4etWRMS5bEHGBrkfU2v7+pn6Zo1eq9gL7k11h9md6GfqVxzbVIuPKubQd1tZHj6npxVjodbWz5mYsVtW1Esx0vNq2tS/md7n+3M09V4rJmb+KyrWHrO+px0d+6Y5c0ZEbMdtGftk9hkZe2bZ95+B2T+Ph/6ZWpmui+XWUMbc2SYi4tL3FmTsxM19Geue9p3pzjW9t7qYr8nY3uCazZului/VM90P81KfeyIi8qk+j9UyPb9d7fn6fZ++0oq2adMq7Uwvestt3R9Wl/zZYPakrqfSPG52ya+zV/snZMzNu6OKtWdjqtfZ9zf/iIz9g5+9Y/POfFD3h9u/7dvtcxf1Xdnlq/ru6dGldZu385BeGAqzCSqGvm2KkY4XI13/UxOLiChN25V3sda6c9AftLl6Hp1DxuJC3e/rl9q633ZnRjJWb/sNeGKqNTXn97a5r46ImDHrU3Oo95VpxWeKXbPHc2eN3bHvP61Mx+upXoe7NX9nsGT2QT/R0XNcRMRHlndkzN1PNud926QNUxdmqirHfh5LzLYtKr65WHXTJ2q6bdKKtknMJVMj1eta2vRj9aGuvu+5f6SfaTLxz9vr6XGzZ8bUpolFRNwY6v3KKNdt7s6HERGLtftl7Hd3b8jYrf5Jm/fl6WUZ24qbMvap0UdtXvfN5R/4zxvxxlSfAdxeMaJqXXN9QrfNeOq/yX7ojH7eE0/q/WA67w+bO5/T89J7f/srMjae+n3mi+LsVrpN5jvwX34DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI49Pn4DAAAAAAAAAAAAAI692t0m2NztxrjWOPDvjdrUljvVGcjYbHt05OcZ5pmMPb6yKWMrp3s2b+fJpox9ctk8775/l2d/oSNjn7+zIGOPzoxt3rOdvowNxnUZm2n5590f6nr49rZ+l4iIjWEhYyfb+u8wHl7ZsnnLMpGxl3ZmZGx7nNu8Wei+lOmfjM/e7Nq8t4fnZeyZk+sy9qmlXZvX2eu1ZOwLN0/Yst/e0i97/4zuD+MXLti8rVT3hwfm9mQsN+0dEfEbN3X//uXel2XsB+98zOb935W6j843JjI2mPpp9hNm/njvmTsyduLDuv4iIoo9HX9lV4+LiIjSxCam/tPElYxYMPP+UqrnrPc+dsvm3dvQ/fCb11dlbLGu2y0iYqWrn8m962rr4Jr4Tn2xTvVz/zzvtuKTH4pi9uC8nV76VVuu3dLrT3Ok372R6rEZEbFQ1/uG2Zrud1lFv6unOu7moU7FPqZuys6btXSm49fZrKaft5zqeWiaH/3vGcvw86pbZ6vG/VHVTF5X91XxzPSH5C7eZdbMJz982s+5ya2Pyti1YkPGnosXbd7pWPe1J9KPyNhPnfX7rqs9vd9zY2q3Yj283NfxOTMulhp+rG6Mdd7LPT1u1s2+NSJimOt4nuhnGky3bd5Jrs8kk0yvoxERZan3ttN8qAu2bdp4oHxcxmbrR9svR0S8ua/3zKNCF96d+Pluf6rL7pmlduCPBlGUh/fDcXFv5kEla0Rkh2x9sq6v8HRWj4WkY2LNiiuD1PyuqZukq/dvERGxoc8+ZU/353LTn+snF/X+7tvfOCVjr+z4DvJ0R5+pVs1Z1++8IzbN2b2d+Wd6YEbXxeqiPm9lmZ//rpp7it98RZ91T18x81BEfGVDr5evjf+2jOWFz5smug93W7rNp7mfc6fZrM7bPCljC/6oYPcxLdPmzYp2m2noPfxcR9dhs+PX2dQM5bSl54eV4b7Nu3NFn+Ou93Xe57f0GI+IuJ5ekbFJ6Hqod+ZsXje3/N1XH7Flf/OG3rONigUZe8+837MlM7rvZy29fqdDP7cUIx0v9nU/TDI/3036eq4szb6gyP36l4uyU3O2uldWm8PoHrKvXWj6M6K7J6+1dJ03lvzztM7ptpwd6j49WvfjrHVb7/Hctmli2rlKYe7sqnTNfUMr03kXK7YyJ5q6bc60/P1P29yPuD5fTCrGw8DcNxT6N5OGz5vUdT0lpo+mVfvolom7PWjN9we3v03nzV2EaZeIiNqied7CnB97Pm9jzczL+nNX9Cd+Hz9f188739DrRHviO3+r1HPATrImY1/Lb9i8fXM/MpjqivjK2odt3ofm9H77t8f+jnRt95smas5CFZ9lS3tGMOtl6eeWC7/yP8rYtdrPytjvXDxr8/5L3/t5GRtN/L2+kySHf9Mqxdn8n8R/+Q0AAAAAAAAAAAAAOPb4+A0AAAAAAAAAAAAAOPb4+A0AAAAAAAAAAAAAOPb4+A0AAAAAAAAAAAAAOPb4+A0AAAAAAAAAAAAAOPb4+A0AAAAAAAAAAAAAOPb4+A0AAAAAAAAAAAAAOPZqd5vg+n4nurXmgX+/2Dv4b+/05Fxfxh55cl3GJvv+e/3atYaMdfa6MrbVa9u8y7f08973U2MZSx49bfOmybaMXdwvZWxjpN8zIuK9U11PJ5oTGVuZZjbv7YGup1d2bNHQbxOxZLrL4hld9xER04F+19aNQsY+tFK3eX9kVcceOHVRxn779XM279roaMNu8f6Rjd9+VffvlzYXZexK34+p4VTXYcMU7Wa5zXt2pidjj/6A7kz5vn6eiIinbi/J2Lf2H7ZlnRXzvEWhK+LffNznffysnu86K3qsllPfj/KBHnEPzvgxdaat54FaovOuD1s278V93UfPdwcytnzBP293Qc/BZzZ13nZ9avN2zFy5emZPxuqzbraLGG4d3l92x+OIb9ui765WO6J9cE5P2r5vtTq6TmdHep4aVfRZpygTGZupaMeltn5e18a1mp/D0lS3c62m56ms7ucwZzrWc01u5qGIiERXYSR2hfZlU9M2YeaLCP8XmJmp33rq67CWmfo3z5RWPG9i4gtN3fcvdPye+LF5vad7eVuvh1f2vmTzzrTOyNhL27qOzrTmbN5hodv8R8/dlrGsot32rp7SMbOvna+YA1z8tb2OjP3a4Dds3rPpe2XsSv6sjO0Pb9i8aaLnytHEb7aTRNdTWer6fzreZ/N+4pTuwyeaOm8z9fOoa9d+rvvZ0MQiIgbmZ11sOPVzgDI++rR+JGk7Im0erIPE7N8iIpKWjiddPQ8ls/6cHPN6HEWh67R45aZNO7k6lLH96/ocd2Pdz2Evbum55jvbbq/i+3PmFkujYda7iIg5M4fN1vz859bDekO/T9WruH3Zt7Z0HV684tfD7xbfk7HJVJ/FylKfBSIipoU+SzyUflTG0tTvrU4152XsM6d1H/30yS2b162Xbg8019FjJiKi2dL9pdbS/aHWPvok586k333V35X9o+v7MvZifEPGGomZkyIiMTvQfr4hYzP/xW/bvM5C91Eb/48f+qMy9jNPvyljSdPP+5GawdzQMbOdeCvtkf8zKt+Xylz3l7E+tsVk4h9oKu45x5M/4AU8Ik7P7cds/eCc1ag4e7Y6ugIaC+bO7uFZmzeZ12t8OdK/mZnxGRFR5Hre7Q31nqNfcWcwzHVbb5qlYGT2I1VmzNXxSbMPjohYaep5t1PR5uNcj+99883FrdEREc2JWQua5qxc8a6puedIzJ6j7Pu9TOoaoGoOdPKjjf/EXYRHRFI72gSZVOzpmmNdh809XbYM3x/c/cipjrl/Kmds3jDXuHuJXmvXBi/ZtOOpvostzH7wf5z+DZs32dHvOhzdsmX9Fy8tzfx+pSjMvq7UbZ4kfly4vO05Pe//4AV/jzF5btfGjypND18zyrKMwuzx/3H5d/uBAAAAAAAAAAAAAAD4g8bHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAscfHbwAAAAAAAAAAAADAsVe72wS701pMy4Np0sSXa2S5fqhF/U2+vuwTz7yo835vZ1bGfvW6LhcRsTbVz/SXbnRl7Mcfu2jzDvMTMrbY0O9a2qwRw0I/r4v1JnWbt2Xa7WMrhS07ML9bT3TZGxfnbd7Z7lDGHpnbl7GVZtPmTUwt93oNGXv/yqbNe6fX0c+00pOxYmTTxp29GRlz7Xay5XtTz/T9J2YHMvbx91yzebfXdD08/ztLMpZUzC0fXNyTsdWWznu2res+IuLUw7ovpU39UA9+ZtnmjeKsDE2+fkXGtp/3FbGxvSBjayPf93vTTMa2Jjr25p5/ponpag8P9dwz+Y7/O63Hzq3J2ONP3JGxrRu6D0ZEbO23bVxZbOtxEREx2Dt8/hhOjvRzR1a221G2D9ZBuqznkoiI1gkzr7b0OJrZ9ZPY9q6u79FEb1ea9anNO9vVv9to6rkxqfk1zamap5xiovv71MzHZel/NEv1+9RSP8bKQucuzFqpZ4tqmdkXVNVvlphnMvWQmnJv/W7V7utw3Zrvox9a0i/0/oWHZewXLz9k8z5XvihjXxnr2MZl/ZsREalpgE52UsY+cVrPxxER7UzX782h/s3tir1rw7T57lj/5u7gqs27kb9g40qS+ONXWer+khd6zxsRkaZ6f9qq6/1IK/Wj9UJHP1Mr0/W7PfZ5t818NzRHs6JiKE7M9F2UunDVCJ+IHx4ffbk4kqSWRFI7OCaSqgO4i7tYreLv5etmDNZ0H0hm/X60LHV/d2exV3fmbN6X9vQYvD3Qjbk/8fcFrgrzUtfDQt13oPtn9b5rpjm2ZXcGLRm7eUfXU5b60bA21Hl3zLy6NfVz2F7odSIv9Lu2G6dt3rOdZ2Ts37ywImOD3I+p+bruE588p8/CM0t+Tzwd6jGXmv5S7/i+lJkhl7jpumJuKQa6zX/5qw/I2C9d9nn3YkPHRtdlLDNr4VtxXRE7/ddlzM1JVf7YzE/b+J/9Y/reMDul7xvLwT06QFatJ2ZdSMy+IDF3nBERaVP3pXSk85aDqr3V4b9bdX66F9qtSbTrB3+33vBrTHtJ78Ua5/WcnFSc7aOp1/DEnBGTOT+P1dq6b7qzXF7RJkNzLt0xw2GnYrPWMH2+lbmzT8W8e8TzY0REYepimps99MCfjXJzp1A361qtVbEPMuuIO0enFX2/1jF3Nm5OqdiflyaeuK1vxbb4sD3691vWMUtXtLu687d2Ku7Larp+z7X1u8xUnA96U712vTzelbFp7u9T3XnYnYVHE/+t5m7W+AhdTyuzH5Cxce6/Q+wNLpuo6+C+bf7PD/3bMvaFF/Tc/sqeP7t55kyY+DlrsXP4/VRR5rG5/2zlL/NffgMAAAAAAAAAAAAAjj0+fgMAAAAAAAAAAAAAjj0+fgMAAAAAAAAAAAAAjj0+fgMAAAAAAAAAAAAAjj0+fgMAAAAAAAAAAAAAjj0+fgMAAAAAAAAAAAAAjr3a3Sa4PsiilR1M89GlfVvu9LyOf/t3TshYb1q3eR9Z3Jax9u6sjP3sfU2bd208J2P9vJSx5y6fsnnvDBsy1jGtkyU2bWSJfqaaiU1Ln3ihOZaxP/7YTVt2d6MlY5c2FmTs9n7X5k3M+5w/tSVjJ/u+L23sd2TsO7d1H11o6DqKiHh4RT9TazmXsXJq08ZscyRjjUznrbI+asvYTdN/86nvS7d3Z2Tsb7ypx9vm0L/LX3xY1/9P//glGbv8rJ4fIiIuvbgoYxce1W1a3tKxiIhyayhjWy/pSWBz24+LmmnzvGKcX+zp3x0XutxJ3VUiIuJMSz+Tm5de2vXv+lisyVj7KV02Hw1s3mtbuh8Ot3UdXd5csHl/9ebhfW1U6L5wL6TXrkU6e7DRils7vlxd95/6nG7HrDmxeWumf4x6fr526g2dN6npDp1UrLP3SqmrMMqKseu4fUGWmIEdEYX52SSO/kypfSYdc+Wq4i7m9hMRvv73R3o9vDbwe8y6fV5dbqXlt/GdvllL45qMbZd9m/dEqtfvL97Rf1d7bXDa5u3WdD0sNHTsd277ejDb9Pji4BVb1pltX5Cxbl3vE1vJvM2bhZ7vbo2et2Un056MnWo/LWPbU72HjIj48rreEz86l8nYMPfzQ8/sbSdmWir8ULV7FdcfJhWJe+KhJoWfQ991aRz+J+x382ft7t2nFe9X6ni5qPfP8UG/v2ud25Cxc+duyFj+W+s273Pbei7aGOm9yl7hx0k20RvhvNTj5Gzb7//On9NniVrT99nRRT0/Preh22Z36jvTm/s6/mJvU8auJq/avONc3xFlqV5nF9sP2ryJGRzXBrpt/uL7Ltq8cw/pSawwVwJ5z7db1tRjKjVb4rTp51xThX7DUTU3Xtf97Bcu6XI7ue/7V+MFGeuP9N1TWfozR8TR70aO6tnhVRtPl/1eUcnXKualVX0HZ9u8StVCfESufzdm9LiYDHyb5vnhc0DV3v9eKMvDz3tp3a+12axur6StK67sVdwx7Jk7kaGZ47b9ved4V88Ld/p6vbzY92PhzT1dD5f29djv5f5Cdb6m63Ao+k9ExF7FelnexVn5sG8tb3N3vHnhn2k00Xlrme6H9Yq7WHfOds+Uu8uGiMjSezNOazX9PvW6uUOqaNLEPG+tZeq3c/TzhJs/Frv+3rMwdxz1VI/VWuLP4I/O6/3VtbUPytiNGXN2iIjNid6bdWpLMnZr91mbtzR79W7rvC37/3zwz8nYwzN6nb7Y8/Pdl+/odv2Fzf9Uxuba99u893d0/37fSX2OemJJ11FExGrz35Kxf3hVv8tXiy/ZvA+Uh99jTMtRfC18u0bwX34DAAAAAAAAAAAAAP45wMdvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxx8dvAAAAAAAAAAAAAMCxV7vbBN/bimik5YF//+CC/66++mRfxna/0ZSxYZ7ZvKOJfqXTMz0Z+8E/sWHzFrsTGfvbf/9+Gfv8nY7NO1d3sYP1+rb5WmHzLjWmMlZLdN4qu2P9wDvrbVt2cVW3+aNN/bxbO74O90e6v5xd2pWxhU80bN75F3Sf2Hle/2aVWiOXsXyky23d8PWwNWjJWBmJjJ1sD23eTy7r2LYZb+t3ZmzewnTD0239vGc7ftp6//mrMpad0O1Wlvo3IyLu9HX/fux9uk1j6sfqzrd033/x+qqMtTLzmxHx8Gndfx/Pd2zZZjorY7M1/bxPnFuzebOmfuaXL56UsTf3fd9/5doJGXv0d9dlLC98X1po6QHZrOt62Oj55+2JoiPfVd59X30uonNwTORrZiKKiNI9Z6rHUdLwa0+jqxMniV6Di8ld/B1foZ+3cqU8ZO9zryVm/U5T34EyE89SX4dFaX7XTJ1JRS2m5n0SPyUfWWbazdVvRMT+SO+Bvrej581LPb93XW7q362bZxrkvs2LRMffU3xQxh6d9XNYu6YbZ9FsrZYb/nm/t6P7YctU4S/t/abNO5xuy1g91Wv7zy3+L23e8zP6oXbHut2Gue9nd4Z6vps0/Z5tP7slY/OlXiv3w+fdHOo95rZpnKxiHNu4mZYmFeul22OOTf3vTfzeanc6PvTfp6VfN99tSZpE4iZfxVWM2a+WU18vSWIaa25O521WnKdm9VkiberJ5uzaKzbticu6HtaLfRnbT/S5MiKiyJdkbHGk14iVzsDm7T5o9ip6unjLRR26OtD74Gv62B4RERtD3ScSM3hH5Z7NW5R6f73UeVjGTsQDNu9meU3GzDVPdFZ8BWdnujJWXNKVWOZ3sckx47isWF/KqelLJu903+f9+ptnZOxKoc9it5I3bd47u8/KWFn6deuokkTPLbVMz2cREXmh2/y7O79gy/7l//jflrH3zuvx9tSCXp8jIt77mU0ZS+fNZeTduIsjUmL2mIk5j0yn/iwzFvdW44q7mnshzcpIs4PvktV8xbmlttjR+5Dytp/QS3MJkQ/0M402fZ1fuqEvEv//7d29blxbGQbgb2Zsh4OOOUKnC0lDRUOPgBvgoii5FDrug/J0CIkCiYRUKEgZ/8zMntmbIlii8PeuyIkjRnqe0kt77bXX37d+bPkvH/q9xt+2eX58c9PPy/869d86Dzrmi3DX8O/Hl39VVXU52Efvwtx6f8pj8O7Yl+mn4Sz2OpxVVVVdpnOBsH+82OTxks5Ud+Fbbo+5Hvanvo6n8M7RKdGPL/q59Wrdp6X6q6r6JtT/dThjvP427yc2l2GtHs61vvlRXst8d+rj6ftw37IdzLu34bW/vP6uTfv9z34R8/3DX3/epv355o9t2quf/Drmuz32++jfXv4uPvvD+36c/zPc1VwNOun7qZ98NuuQ76Zfn1ZVfR/u4L697vvh39/1e52qqj/9o8/3bu47xK82v4n5Ts0h9LR82rW2v/wGAAAAAAAA4Oy5/AYAAAAAAADg7Ln8BgAAAAAAAODsufwGAAAAAAAA4Oy5/AYAAAAAAADg7F089cFlWaqqapr3j6bfHh//+YMP+0ObdnPs026Pq5jvi/DsxTL35dn1z1VVzbupTbs/9d+6n/PvF+xOfdpSS5t2terTqqruTsc2bZr7erhc92lVVevw3u2U63Bz6NPvpz7fm2PupvfH0K6Hvt1e3Ofy3odnR/07SfV0Cu8c1W8q01L9uDlV31c+5ts/e3fqO3Aaxx/z7cfG7rRr09Z5Coj1tNlt2rSbwdxyG/rhh0FfSj6E8qY2PS1h8qhcD6O2uQtz2jr0l1EfXa/6MqdvvTv17TZ6No63Obf5zfGyTTuEerg55vLu58f79+G/8fQhvj6Xh/y7fnsM8bmqat4/rXyDLltzeO106NtqDnPJyGr9GXU9iMNPtYTvOUx939qFOFpVdQixcn/MjTOd+jKl+LIK65iqvKZYheGZnququgrrvcvqv3VU3ttjn/45a8H7U59vCk2HOZf3tPSD6rj05T0MyrsOc2da16bvrKrah3xTf5iXvI5ZwuQzh7Ruj/MgtWtqm0Neate09GvBufq0qvw9uT8MyhTqYhfmh81gzZbem6ppGtThPqSntpnmPBcemzp8GE9fK35v94/3g9WSx+6q+hgS579BQ65u+3X7sr3v0w65vle3/bPpnYfBOibtM9LceKqcb55Xr9q00bo8nVMsg8Gb8k71kMZQVT5PSPUwD/adeb7unx21TZo7u3V5VT5LqMrnCVPoh4Mmj9LSdbQ0TUc9Yek0LG/aO6bYM+4P6YOeaR0e3rmkSho+O1oD9f3w/tS/9+Yzzl3Xu6fX4RIWM8s+jOPR5BKS5zAct1OOU3fNgvphjnzu+P2/79hOj3/INJhvDqGpU1suaXFeuS3D0K592J9X5b55H+NPzncKsSDHn9zG09KvkfYh5g2qtzZhYh6dYmxW/Xuvjn1/Wa/y3HoRgkF6Z7pTqapalr7t9uGM7DacU1TlvekU3jmq3yWcC0zrPm10b3JK9Z/OTEfnqWGCXMK4mcIZUlU+C09nraO+n8Zy2o+N7lu6/VhVjtNz2GN/fDb0hzC3VFUdwhyR6mEUedKclr81zwFp3ZbvEnI9TGEvegz1PzjKrKn51k/dg6+WJ0b5t2/f1uvXr5/yKADQePPmTb169erZ8he/AeDLE78B4Pw8d/yuEsMB4DmMYviTL7/nea53797V9fV1rdKfYwAAQ8uy1Ha7rZcvX9Z6/Xz/lUT8BoAvR/wGgPPzteJ3lRgOAF/Sp8bwJ19+AwAAAAAAAMD/i+f91TYAAAAAAAAA+ApcfgMAAAAAAABw9lx+AwAAAAAAAHD2XH4DAAAAAAAAcPZcfgMAAAAAAABw9lx+AwAAAAAAAHD2XH4DAAAAAAAAcPZcfgMAAAAAAABw9lx+AwAAAAAAAHD2XH4DAAAAAAAAcPZcfgMAAAAAAABw9lx+AwAAAAAAAHD2/gNxqrSaGL/LegAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from matplotlib.colors import LogNorm\n", "\n", "x_slice = 32 # we select a slice of the field in the x direction\n", "traj_toplot = temperature[:, x_slice, :, :]\n", "\n", "# field is now of shape (n_timesteps, y, z). Let's do a subplot to plot it at t= 0, t= T/3, t= 2T/3 and t= T:\n", "fig, axs = plt.subplots(1, 4, figsize=(20, 5))\n", "T = traj_toplot.shape[0]\n", "\n", "# fix colorbar for all subplots:\n", "normalize_plots = False\n", "cmap = \"magma\"\n", "\n", "if normalize_plots:\n", " vmin = np.min(traj_toplot)\n", " vmax = np.max(traj_toplot)\n", " norm = LogNorm(vmin=vmin, vmax=vmax)\n", "\n", " for i, t in enumerate([1, T // 3, (2 * T) // 3, T - 1]):\n", " axs[i].imshow(traj_toplot[t], cmap=cmap, norm=norm)\n", " axs[i].set_xticks([])\n", " axs[i].set_yticks([])\n", " axs[i].set_title(f\"t={t}\")\n", "else:\n", " for i, t in enumerate([0, T // 3, (2 * T) // 3, T - 1]):\n", " axs[i].imshow(np.log(traj_toplot[t]), cmap=cmap)\n", " axs[i].set_xticks([])\n", " axs[i].set_yticks([])\n", " axs[i].set_title(f\"t={t}\")\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "MLtest", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 2 }