|
import gradio as gr |
|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
df = pd.read_csv("movies.csv") |
|
features = ["keywords", "cast", "genres", "director"] |
|
|
|
for feature in features: |
|
df[feature] = df[feature].fillna('') |
|
|
|
def combined_features(row): |
|
return row['keywords']+" "+row['cast']+" "+row['genres']+" "+row['director'] |
|
|
|
df["combined_features"] = df.apply(combined_features, axis=1) |
|
|
|
Tfidf_vect = TfidfVectorizer() |
|
vector_matrix = Tfidf_vect.fit_transform(df["combined_features"]) |
|
vector_matrix.toarray() |
|
|
|
cosine_sim = cosine_similarity(vector_matrix) |
|
|
|
def get_index_from_title(title): |
|
return df[df.title == title]["index"].values[0] |
|
|
|
def get_title_from_index(index): |
|
return df[df.index == index]["title"].values[0] |
|
|
|
def check_movie(m_name): |
|
movie_index = get_index_from_title(m_name) |
|
similar_movies= list(enumerate(cosine_sim[movie_index])) |
|
sorted_similar_movies = sorted(similar_movies, key=lambda x:x[1], reverse=True) |
|
mv = get_suggestions(sorted_similar_movies) |
|
return mv |
|
|
|
def get_suggestions(sorted_similar_movies): |
|
i=0 |
|
movies = "" |
|
for movie in sorted_similar_movies: |
|
t = get_title_from_index(movie[0]) |
|
movies = movies + t +"\n" |
|
|
|
i=i+1 |
|
if i>10: |
|
print(movies) |
|
return movies |
|
|
|
def check(enter_movie_name): |
|
mvs = check_movie(enter_movie_name) |
|
return mvs |
|
|
|
|
|
movie = gr.Interface(fn=check, inputs="text", outputs="text") |
|
movie.launch(share=True) |