File size: 4,137 Bytes
870b700
 
b951534
870b700
 
db61916
870b700
 
 
 
1119679
870b700
 
 
 
1119679
870b700
1119679
 
 
870b700
1119679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03b53b
1119679
 
 
b03b53b
1119679
 
b03b53b
1119679
 
 
 
 
 
 
 
b03b53b
1119679
 
 
 
 
 
 
 
b03b53b
1119679
 
 
 
 
 
 
 
 
 
870b700
 
1119679
 
5d2b646
1119679
 
5d2b646
1119679
 
 
 
 
 
 
b03b53b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import datasets
import csv
import random

class ppb_affinity(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.2")
    
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="raw", description="Raw parsed PDBs dataset with critical filtrations only."),
        datasets.BuilderConfig(name="filtered", description="Raw dataset with additional cleaning and train/val/test splits."),
        datasets.BuilderConfig(name="filtered_random", description="Filtered dataset with random 80-10-10 splits."),
    ]
    
    def _info(self):
        return datasets.DatasetInfo()
    
    def _split_generators(self, dl_manager):
        if self.config.name == "raw":
            filepath = dl_manager.download_and_extract("raw.csv")
            return [datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": filepath}
            )]
        elif self.config.name == "filtered":
            filepath = dl_manager.download_and_extract("filtered.csv")
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"filepath": filepath, "split": "train"},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={"filepath": filepath, "split": "val"},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": filepath, "split": "test"},
                ),
            ]
        elif self.config.name == "filtered_random":
            filepath = dl_manager.download_and_extract("filtered.csv")
            with open(filepath, encoding="utf-8") as f:
                reader = csv.DictReader(f)
                rows = list(reader)
            n_total = len(rows)
            indices = list(range(n_total))
            rng = random.Random(42)
            rng.shuffle(indices)
            n_train = int(0.8 * n_total)
            n_val = int(0.1 * n_total)
            n_test = n_total - n_train - n_val
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": filepath,
                        "shuffled_indices": indices,
                        "split_start": 0,
                        "split_end": n_train,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": filepath,
                        "shuffled_indices": indices,
                        "split_start": n_train,
                        "split_end": n_train + n_val,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": filepath,
                        "shuffled_indices": indices,
                        "split_start": n_train + n_val,
                        "split_end": n_total,
                    },
                ),
            ]
    
    def _generate_examples(self, filepath, split=None, shuffled_indices=None, split_start=None, split_end=None):
        with open(filepath, encoding="utf-8") as f:
            reader = csv.DictReader(f)
            rows = list(reader)
            if self.config.name == "raw":
                for idx, row in enumerate(rows):
                    yield idx, row
            elif self.config.name == "filtered":
                for idx, row in enumerate(rows):
                    if row["split"] == split:
                        del row["split"]
                        yield idx, row
            elif self.config.name == "filtered_random":
                for global_idx in range(split_start, split_end):
                    original_idx = shuffled_indices[global_idx]
                    row = rows[original_idx]
                    del row["split"]
                    yield global_idx, row