|
import datasets |
|
import csv |
|
import random |
|
|
|
class ppb_affinity(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="raw", description="Raw parsed PDBs dataset with critical filtrations only."), |
|
datasets.BuilderConfig(name="filtered", description="Raw dataset with additional cleaning and train/val/test splits."), |
|
datasets.BuilderConfig(name="filtered_random", description="Filtered dataset with random 80-10-10 splits."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo() |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name == "raw": |
|
filepath = dl_manager.download_and_extract("raw.csv") |
|
return [datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": filepath} |
|
)] |
|
elif self.config.name == "filtered": |
|
filepath = dl_manager.download_and_extract("filtered.csv") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": filepath, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": filepath, "split": "val"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": filepath, "split": "test"}, |
|
), |
|
] |
|
elif self.config.name == "filtered_random": |
|
filepath = dl_manager.download_and_extract("filtered.csv") |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f) |
|
rows = list(reader) |
|
n_total = len(rows) |
|
indices = list(range(n_total)) |
|
rng = random.Random(42) |
|
rng.shuffle(indices) |
|
n_train = int(0.8 * n_total) |
|
n_val = int(0.1 * n_total) |
|
n_test = n_total - n_train - n_val |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"shuffled_indices": indices, |
|
"split_start": 0, |
|
"split_end": n_train, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"shuffled_indices": indices, |
|
"split_start": n_train, |
|
"split_end": n_train + n_val, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"shuffled_indices": indices, |
|
"split_start": n_train + n_val, |
|
"split_end": n_total, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split=None, shuffled_indices=None, split_start=None, split_end=None): |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f) |
|
rows = list(reader) |
|
if self.config.name == "raw": |
|
for idx, row in enumerate(rows): |
|
yield idx, row |
|
elif self.config.name == "filtered": |
|
for idx, row in enumerate(rows): |
|
if row["split"] == split: |
|
del row["split"] |
|
yield idx, row |
|
elif self.config.name == "filtered_random": |
|
for global_idx in range(split_start, split_end): |
|
original_idx = shuffled_indices[global_idx] |
|
row = rows[original_idx] |
|
del row["split"] |
|
yield global_idx, row |