--- license: cc-by-4.0 tags: - audio-diarization - speaker-segmentation language: - kk --- # Diarizations Dataset Aggregated speaker segmentation outputs. ## Videos ### `ecx7ywj89m4` - Segments: **54** - Speakers: **SPEAKER_00, SPEAKER_01** - Duration: **2369.59s** #### Config - Trimmed: none - Diarize model: `pyannote/speaker-diarization` - ASR model: `akuzdeuov/whisper-base.kk` chunk `30s`, lang `kk` - Batch: `16` ### `FWmr-zrGK_w` - Segments: **206** - Speakers: **SPEAKER_00, SPEAKER_01, SPEAKER_02** - Duration: **3071.74s** #### Config - Trimmed: none - Diarize model: `pyannote/speaker-diarization` - ASR model: `akuzdeuov/whisper-base.kk` chunk `30s`, lang `kk` - Batch: `16` ### `FzeUEbA6j4E` - Segments: **535** - Speakers: **SPEAKER_00, SPEAKER_01, SPEAKER_02, SPEAKER_03** - Duration: **4425.93s** #### Config - Trimmed: none - Diarize model: `pyannote/speaker-diarization` - ASR model: `akuzdeuov/whisper-base.kk` chunk `30s`, lang `kk` - Batch: `16` ### `WC_8foLpFbE` - Segments: **158** - Speakers: **SPEAKER_00, SPEAKER_01, SPEAKER_02** - Duration: **3605.37s** #### Config - Trimmed: none - Diarize model: `pyannote/speaker-diarization` - ASR model: `akuzdeuov/whisper-base.kk` chunk `30s`, lang `kk` - Batch: `16` ## Usage ```python from datasets import load_dataset ds = load_dataset('pushthetempo/diarizations') print(ds) ```