--- language: en tags: - image-retrieval - copydays --- # Dataset Card for Copydays ## Dataset Description **Copydays** is a dataset designed for evaluating copy detection and near-duplicate image retrieval algorithms. It contains images with various modifications to test the robustness of retrieval systems. - **copydays_original**: Original, unmodified images. - **copydays_strong**: Images with strong modifications (e.g., cropping, rotation, compression). These datasets are widely used for benchmarking image retrieval systems under challenging conditions. ## Dataset Features Each example contains: - `image` (`Image`): An image file (JPEG or PNG). - `filename` (`string`): The original filename of the image (e.g., `200000.jpg`). - `split_type` (`string`): The type of split the image belongs to (`original` or `strong`). - `block_id` (`int32`): The first 4 digits of the filename, representing the block ID (e.g., `2000` for `200000.jpg`). - `query_id` (`int32`): The query ID for query images (-1 for database images). Digits 5 and 6 of an image name (e.g., `01` for `200001.jpg`). ## Dataset Splits - **queries**: Query images with modifications for evaluation. Also includes the original images. - **database**: Original images used as the database for retrieval. To tell if something is an original image or a strongly modified image, refer to a given images `split_type` field. An example is shown in the `Example Usage` below. ## Dataset Versions - Version 1.0.0 ## Example Usage Use the Hugging Face `datasets` library to load one of the configs: ```python import datasets # Name of the dataset dataset_name = "randall-lab/INRIA-CopyDays" # Load query images query_dataset = datasets.load_dataset( dataset_name, split="queries", trust_remote_code=True, ) # Load database images db_dataset = datasets.load_dataset( dataset_name, split="database", trust_remote_code=True, ) # Print the length of the query dataset -- should be 386, since it includes all 229 strong AND all 157 original queries print(f"Number of query images: {len(query_dataset)}") # You can tell if it is a strong or an original query by checking the `split_type` field on a given image example_query = query_dataset[0] # Get any desired query image print(f"Example Query - Filename: {example_query['filename']}") print(f"Example Query - Split Type: {example_query['split_type']}") # Print the length of the database dataset -- should be 157, since it includes all 157 original images print(f"Number of database images: {len(db_dataset)}") ``` ## Dataset Structure - The datasets consist of images downloaded and extracted from official URLs hosted by the Copydays project. - The `copydays_original` dataset contains unmodified images. - The `copydays_strong` dataset contains images with strong modifications. ## Dataset Citation If you use this dataset, please cite the original paper: ```bibtex @inproceedings{jegou2008hamming, title={Hamming embedding and weak geometric consistency for large scale image search}, author={Jegou, Herve and Douze, Matthijs and Schmid, Cordelia}, booktitle={European conference on computer vision}, pages={304--317}, year={2008}, organization={Springer} } ``` ## Dataset Homepage [Copydays project page](https://thoth.inrialpes.fr/~jegou/data.php.html#copydays)