haodoz0118 commited on
Commit
fe234d5
·
verified ·
1 Parent(s): 1705daf

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +107 -0
  2. header_flow.jpg +3 -0
  3. kitti-flow2012.py +117 -0
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-3.0
3
+ ---
4
+
5
+ # Dataset Card for KITTI Flow 2012
6
+
7
+ ## Dataset Description
8
+
9
+ The **KITTI Flow 2012** dataset is a real-world benchmark dataset designed to evaluate optical flow estimation algorithms in the context of autonomous driving. Introduced in the seminal paper ["Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite"](http://www.cvlibs.net/publications/Geiger2012CVPR.pdf) by Geiger et al., it provides challenging sequences recorded from a moving platform in urban, residential, and highway scenes.
10
+
11
+ **Optical flow** refers to the apparent motion of brightness patterns in image sequences, used to estimate the motion of objects and the camera in the scene. It is a fundamental problem in computer vision with applications in visual odometry, object tracking, motion segmentation, and autonomous navigation.
12
+
13
+ KITTI Flow 2012 contributes to optical flow research by providing:
14
+ - Real-world stereo image pairs captured at two consecutive timepoints (t0 and t1).
15
+ - Sparse ground-truth optical flow maps at t0, annotated using 3D laser scans.
16
+ - Calibration files to relate image pixels to 3D geometry.
17
+ - Disparity ground truth and stereo imagery for related benchmarking.
18
+
19
+ The dataset enables fair and standardized comparison of optical flow algorithms and is widely adopted for benchmarking performance under real driving conditions.
20
+
21
+ ![Data visualization](https://huggingface.co/datasets/randall-lab/kitti-flow2012/resolve/main/header_flow.jpg)
22
+
23
+ ## Dataset Source
24
+ - **Homepage**: [http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow](http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow)
25
+ - **License**: [Creative Commons Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)](https://creativecommons.org/licenses/by-nc-sa/3.0/)
26
+ - **Paper**: Andreas Geiger, Philip Lenz, and Raquel Urtasun. _Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite_. CVPR 2012.
27
+
28
+ ## Dataset Structure
29
+
30
+ The dataset is organized into the following folders, each representing a specific modality or annotation:
31
+
32
+ | Folder | Description |
33
+ |--------|-------------|
34
+ | `image_0/` | Grayscale images from the **left camera** at two timepoints. `<id>_10.png` is the reference frame (t0), `<id>_11.png` is the subsequent frame (t1). |
35
+ | `image_1/` | Grayscale images from the **right camera**, same timestamps as `image_0/`. |
36
+ | `colored_0/` | Color images from the **left camera** at t0 and t1. |
37
+ | `colored_1/` | Color images from the **right camera**. |
38
+ | `disp_noc/` | Disparity maps at t0 for **non-occluded** pixels. |
39
+ | `disp_occ/` | Disparity maps at t0 for **all pixels**, including occlusions. |
40
+ | `disp_refl_noc/` | Disparity maps for **reflective surfaces**, non-occluded only. |
41
+ | `disp_refl_occ/` | Disparity maps for **reflective surfaces**, including occluded regions. |
42
+ | `flow_noc/` | Sparse ground-truth optical flow maps for **non-occluded** pixels between t0 and t1. |
43
+ | `flow_occ/` | Sparse ground-truth optical flow maps including **occluded** regions. |
44
+ | `calib/` | Calibration files for each sample. Contains projection matrices: `P0` (left grayscale), `P1` (right grayscale), `P2` (left color), `P3` (right color). |
45
+
46
+ ### Notes on Filenames:
47
+ - `<id>_10.png` = timepoint **t0** (reference frame)
48
+ - `<id>_11.png` = timepoint **t1** (subsequent frame)
49
+ - `<id>.txt` in `calib/` contains the camera projection matrices (3×4) used for reconstruction.
50
+ - Testing split does not include ground truth.
51
+
52
+ ## Example Usage
53
+
54
+ ```python
55
+ from datasets import load_dataset
56
+
57
+ # Load the dataset (replace 'your-namespace' with your Hugging Face namespace)
58
+ dataset = load_dataset("randall-lab/kitti-flow2012", split="train", trust_remote_code=True)
59
+
60
+ example = dataset[0]
61
+
62
+ # Grayscale Images (left and right)
63
+ left_gray_t0 = example["ImageGray_left"][0] # Image at t0 from left gray camera
64
+ left_gray_t1 = example["ImageGray_left"][1] # Image at t1 from left gray camera
65
+ right_gray_t0 = example["ImageGray_right"][0]
66
+ right_gray_t1 = example["ImageGray_right"][1]
67
+
68
+ # Color Images
69
+ left_color_t0 = example["ImageColor_left"][0]
70
+ left_color_t1 = example["ImageColor_left"][1]
71
+ right_color_t0 = example["ImageColor_right"][0]
72
+ right_color_t1 = example["ImageColor_right"][1]
73
+
74
+ # Ground Truth (only for training split)
75
+ flow_noc = example["flow_noc"] # non-occluded flow map
76
+ flow_occ = example["flow_occ"] # all-pixels flow map
77
+
78
+ # GT for disparity map Uncomment it if needed
79
+ # disp_noc = example["disp_noc"] # disparity map
80
+ # disp_occ = example["disp_occ"]
81
+ # disp_refl_noc = example["disp_refl_noc"]
82
+ # disp_refl_occ = example["disp_refl_occ"]
83
+
84
+ # Calibration
85
+ P0 = example["calib"]["P0"] # Left grayscale camera
86
+ P1 = example["calib"]["P1"] # Right grayscale camera
87
+ P2 = example["calib"]["P2"] # Left color camera
88
+ P3 = example["calib"]["P3"] # Right color camera
89
+
90
+ # Show example
91
+ left_gray_t0.show()
92
+ flow_noc.show()
93
+ print(f"Calibration matrix P0 (left gray camera): {P0}")
94
+ ```
95
+ If you are using colab, you should update datasets to avoid errors
96
+ ```
97
+ pip install -U datasets
98
+ ```
99
+ ### Citation
100
+ ```
101
+ @inproceedings{Geiger2012CVPR,
102
+ author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
103
+ title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
104
+ booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
105
+ year = {2012}
106
+ }
107
+ ```
header_flow.jpg ADDED

Git LFS Details

  • SHA256: ac93c36af329f60cb11c681e125d6818ad8430c8939d07d9d0dd30bca730f947
  • Pointer size: 130 Bytes
  • Size of remote file: 46.5 kB
kitti-flow2012.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import os
3
+ from PIL import Image
4
+
5
+ _KITTI2012_URL = "https://s3.eu-central-1.amazonaws.com/avg-kitti/data_stereo_flow.zip"
6
+
7
+ class KITTIFLow2012(datasets.GeneratorBasedBuilder):
8
+ """KITTI Flow 2012 dataset with grayscale/color image sequences, optical flow ground truth, and calibration."""
9
+
10
+ VERSION = datasets.Version("1.0.0")
11
+
12
+ def _info(self):
13
+ return datasets.DatasetInfo(
14
+ description=(
15
+ "KITTI Flow 2012 dataset: contains grayscale and color stereo image sequences "
16
+ "captured at two consecutive timepoints, along with sparse optical flow ground truth and calibration files. "
17
+ "This dataset is widely used for benchmarking optical flow estimation methods in realistic driving scenarios."
18
+ ),
19
+ features=datasets.Features(
20
+ {
21
+ "ImageGray_left": datasets.Sequence(datasets.Image()),
22
+ "ImageGray_right": datasets.Sequence(datasets.Image()),
23
+ "ImageColor_left": datasets.Sequence(datasets.Image()),
24
+ "ImageColor_right": datasets.Sequence(datasets.Image()),
25
+ "calib": {
26
+ "P0": datasets.Sequence(datasets.Value("float32")),
27
+ "P1": datasets.Sequence(datasets.Value("float32")),
28
+ "P2": datasets.Sequence(datasets.Value("float32")),
29
+ "P3": datasets.Sequence(datasets.Value("float32")),
30
+ },
31
+ "disp_noc": datasets.Image(),
32
+ "disp_occ": datasets.Image(),
33
+ "disp_refl_noc": datasets.Image(),
34
+ "disp_refl_occ": datasets.Image(),
35
+ "flow_noc": datasets.Image(),
36
+ "flow_occ": datasets.Image(),
37
+ }
38
+ ),
39
+ homepage="http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow",
40
+ license="CC BY-NC-SA 3.0",
41
+ citation="""@inproceedings{Geiger2012CVPR,
42
+ author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
43
+ title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
44
+ booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
45
+ year = {2012}
46
+ }""",
47
+ )
48
+
49
+ def _split_generators(self, dl_manager):
50
+ archive_path = dl_manager.download_and_extract(_KITTI2012_URL)
51
+ train_path = os.path.join(archive_path, "training")
52
+ test_path = os.path.join(archive_path, "testing")
53
+ return [
54
+ datasets.SplitGenerator(
55
+ name=datasets.Split.TRAIN,
56
+ gen_kwargs={"base_path": train_path, "split": "training"},
57
+ ),
58
+ datasets.SplitGenerator(
59
+ name=datasets.Split.TEST,
60
+ gen_kwargs={"base_path": test_path, "split": "testing"},
61
+ ),
62
+ ]
63
+
64
+ def _generate_examples(self, base_path, split):
65
+ image_0_path = os.path.join(base_path, "image_0")
66
+ image_1_path = os.path.join(base_path, "image_1")
67
+ color_0_path = os.path.join(base_path, "colored_0")
68
+ color_1_path = os.path.join(base_path, "colored_1")
69
+ calib_path = os.path.join(base_path, "calib")
70
+
71
+ if split == "training":
72
+ disp_path = os.path.join(base_path, "disp_noc")
73
+ disp_path_occ = os.path.join(base_path, "disp_occ")
74
+ disp_path_refl_noc = os.path.join(base_path, "disp_refl_noc")
75
+ disp_path_refl_occ = os.path.join(base_path, "disp_refl_occ")
76
+ flow_noc_path = os.path.join(base_path, "flow_noc")
77
+ flow_occ_path = os.path.join(base_path, "flow_occ")
78
+
79
+ files = sorted(os.listdir(image_0_path))
80
+ ids = sorted(set(f.split("_")[0] for f in files))
81
+
82
+ for id_ in ids:
83
+ example = {
84
+ "ImageGray_left": [
85
+ Image.open(os.path.join(image_0_path, f"{id_}_10.png")),
86
+ Image.open(os.path.join(image_0_path, f"{id_}_11.png")),
87
+ ],
88
+ "ImageGray_right": [
89
+ Image.open(os.path.join(image_1_path, f"{id_}_10.png")),
90
+ Image.open(os.path.join(image_1_path, f"{id_}_11.png")),
91
+ ],
92
+ "ImageColor_left": [
93
+ Image.open(os.path.join(color_0_path, f"{id_}_10.png")),
94
+ Image.open(os.path.join(color_0_path, f"{id_}_11.png")),
95
+ ],
96
+ "ImageColor_right": [
97
+ Image.open(os.path.join(color_1_path, f"{id_}_10.png")),
98
+ Image.open(os.path.join(color_1_path, f"{id_}_11.png")),
99
+ ],
100
+ "calib": {"P0": [], "P1": [], "P2": [], "P3": []},
101
+ "disp_noc": Image.open(os.path.join(disp_path, f"{id_}_10.png")) if split == "training" else None,
102
+ "disp_occ": Image.open(os.path.join(disp_path_occ, f"{id_}_10.png")) if split == "training" else None,
103
+ "disp_refl_noc": Image.open(os.path.join(disp_path_refl_noc, f"{id_}_10.png")) if split == "training" else None,
104
+ "disp_refl_occ": Image.open(os.path.join(disp_path_refl_occ, f"{id_}_10.png")) if split == "training" else None,
105
+ "flow_noc": Image.open(os.path.join(flow_noc_path, f"{id_}_10.png")) if split == "training" else None,
106
+ "flow_occ": Image.open(os.path.join(flow_occ_path, f"{id_}_10.png")) if split == "training" else None,
107
+ }
108
+
109
+ calib_file = os.path.join(calib_path, f"{id_}.txt")
110
+ with open(calib_file, "r") as f:
111
+ lines = f.readlines()
112
+ for line in lines:
113
+ key, value = line.strip().split(":", 1)
114
+ if key in ["P0", "P1", "P2", "P3"]:
115
+ example["calib"][key] = [float(x) for x in value.strip().split()]
116
+
117
+ yield id_, example